1、1人教六年级数学上册各单元知识学习清单分数乘法一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(二)、规律:(乘法中比较大小时)一个数(0 除外)乘大于 1 的数,积大于这个数。一个数(0 除外)乘小于 1 的数(0 除外),积小于这个数。一个数(0 除外)乘 1,积等于这个数。(三)、分数混合运算的运算顺序和整数的运算顺序相同。(四)、整数乘法的交换律、结合律
2、和分配律,对于分数乘法也同样适用。乘法交换律:a b=b a乘法结合律:(a b)c=a (b c)乘法分配律:(a+b)c=a c+b ca c+b c=(a+b)c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍:一个数几倍;求一个数的几分之几是多少:一个数 几几。3、写数量关系式技巧:(1)“的”相当于“”“占”、“是”、“比”相当于“=”(2)分率前是“的”:单位“1”的量分率=分率对应量2(3)分率前是“多或少”的意思:单位“1”的量(1 分率)=分率对应量三、
3、倒数1、倒数的意义:乘积是 1 的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是 1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数:把小数化为分数,再求倒数。3、1 的倒数是 1;0 没有倒数。因为 11=1;0 乘任何数都得 0,01(分母不能为 0)4、对于任意数(0)a a,它的倒数为 1a;非零整数 a 的倒数为 1a;分数 ba 的倒数是 ab;5、真分数的倒数大于
4、1;假分数的倒数小于或等于 1;带分数的倒数小于 1。分数除法一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。2、分数除法的计算法则:除以一个不为 0 的数,等于乘这个数的倒数。3、规律(分数除法比较大小时):(1)、当除数大于 1,商小于被除数;(2)、当除数小于 1(不等于 0),商大于被除数;(3)、当除数等于 1,商等于被除数。4、“”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1
5、”的量。)31、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为 X,用方程解答。(2)算术(用除法):分率对应量对应分率=单位“1”的量3、求一个数是另一个数的几分之几:就一个数另一个数4、求一个数比另一个数多(少)几分之几:求多几分之几:大数小数 1 求少几分之几:1-小数大数或 求多几分之几(大数-小数)小数 求少几分之几:(大数-小数)大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做
6、两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如15:10=1510=23(比值通常用分数表示,也可以用小数或整数表示)前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程速度=时间。4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。4比值:相当于商,是一个数,可以是整数,分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、比和除法、分数的联系:比前项比号“:”后 项比值除 法被除数除号“”除 数商分 数分子分数
7、线“”分 母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为 0。体育比赛中出现两队的分是 2:0 等,这只是一种记分的形式,不表示两个数相除的关系。(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0 除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本
8、性质,可以把比化成最简单的整数比。4.化简比:用比的前项和后项同时除以它们的最大公因数。(1)两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。两个小数的比:向右移动小数点的位置,先化成整数比再化简。(2)用求比值的方法。注意:最后结果要写成比的形式。如:1510=1510=23=325按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。如:已知两个量之比为:a b,则设这两个量分别为 axbx和。6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是 4:5,时间比则为 5:4)工作总量一定,工作效率和工作时间成反比。(如:工作总量相同,
9、工作时间比是 3:2,工作效率比则是 2:3)依据比的基本性5圆一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母 O 表示。它到圆上任意一点的距离都相等3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母 r 表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母 d 表示。直径是一个圆内最长的线段。5、圆心确定圆的位置,半径确定圆的大小。6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。7在同圆或等圆内,直径
10、的长度是半径的 2 倍,半径的长度是直径的 21。用字母表示为:d2r 或 r 2d8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。10、只有 1 一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。只有 2 条对称轴的图形是:长方形只有 3 条对称轴的图形是:等边三角形只有 4 条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母
11、 C 表示。2、圆周率实验:在圆形纸片上做个记号,与直尺 0 刻度对齐,在直尺上滚动一周,求出圆的周长。6发现一般规律,就是圆周长与它直径的比值是一个固定数()。3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母(pai)表示。(1)、一个圆的周长总是它直径的 3 倍多一些,这个比值是一个固定的数。圆周率是一个无限不循环小数。在计算时,一般取 3.14。(2)、在判断时,圆周长与它直径的比值是倍,而不是 3.14 倍。(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。4、圆的周长公式:C=dd=C 或 C=2 rr=C 25、在一个正方形里画一个最大
12、的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长2计算方法:2 r 2即 r(2)半圆的周长:等于圆的周长的一半加直径。计算方法:r2r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。用字母 S 表示。2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。3、圆面积公式的推导:(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。(3)
13、、拼出的图形与圆的周长和半径的关系。圆的半径=长方形的宽圆的周长的一半=长方形的长因为:长方形面积=长宽7所以:圆的面积=圆周长的一半 圆的半径S 圆=r r圆的面积公式:S 圆=r24、环形的面积:一个环形,外圆的半径是 R,内圆的半径是 r。(Rr环的宽度)S 环=R或环形的面积公式:S 环=(R)。5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。例如:在同一个圆里,半径扩大 3 倍,那么直径和周长就都扩大 3 倍,而面积扩大 9 倍。6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。例如:两个圆的半径比是 23,那么这
14、两个圆的直径比和周长比都是 23,而面积比是 497、任意一个正方形与它内切圆的面积之比都是一个固定值,即:48、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。9、确定起跑线:(1)、每条跑道的长度=两个半圆形跑道合成的圆的周长+两个直道的长度。(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)(3)、每相邻两个跑道相隔的距离是:2跑道的宽度(4)、当一个圆的半径增加厘米时,它的周长就增加厘米;当一个圆的直径增加厘米时,它的周长就增加厘米。11、常用各值结果:=3.142=
15、6.283=9.425=15.76=18.847=21.989=28.2610=31.416=50.2436=113.0464=200.9696=301.444=12.568=25.1225=78.5812、常用平方数结果112=121122=144132=169142=196152=225162=256172=289182=324192=361百分数一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。2、千分数:表示一个数是另一个数的千分之几。3、百分数和分数的主要联系与区别:(1)联系:都可以表示两个量的倍比关系。(2)区
16、别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除 0 以外的自然数。4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“”来表示。二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2.百分数化成小数:把小数点向左移动两位,同时去掉百分号。(二)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否 100 的分数,能
17、约分要约成最简分数。92、分数化成百分数:用分数的基本性质,把分数分母扩大或缩小成分母是 100 的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(三)常见的分数与小数、百分数之间的互化21=0.5=50%51=0.2=20%85=0.625=62.5%41=0.25=25%52=0.4=40%81=0.125=12.5%43=0.75=75%53=0.6=60%83=1.375=37.5%161=0.0625=6.25%54=0.8=80%87=0.875=87.5%251=0.04=4252=0.08=8253=0.12=12254=0.16=
18、16三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:合格率=%100产品总数合格产品数发芽率=%100种子总数发芽种子数出勤率=%100总人数出勤人数达标率=%100学生总人数达标学生人数成活率=%100总数量成活的数量出粉率=%100出粉物的重量粉的重量烘干率=%100烘干前的重量烘干后的重量含水率=%100烘干前的重量烘干后的重量烘干前的重量一般来讲,出勤率、成活率、合格率、正确率能达到 100%,出米率、出油率达不到 100%,完成率、增长了百分之几等可以超过 100%。(一般出粉率在 70、80%,出油率在 30、40%。)2、已知单位“1”的量(用乘法),求单位“1”
19、的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:10(1)分率前是“的”:单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量(1 分率)=分率对应量3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为 X,用方程解答。(2)算术(用除法):分率对应量对应分率=单位“1”的量4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量单位“1”的量 100%或:1 求多百分之几:(大数-小数)小数 求少百分之几:(大数-小数)大数(二)、折扣1、折扣:商品按
20、原定价格的百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折=108=80,六折五=0.65=652、一成是十分之一,也就是 10%。三成五就是十分之三点五,也就是 35%(三)、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。3、应纳税额:缴纳的税款叫做应纳税额。4、税率:应纳税额与各种收入的比率叫做税率。5、应纳税额的计算方法:应纳税额=总收入 税率(四)利息1、存款分为活期、整存整取和零存整取等方法。
21、112、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。3、本金:存入银行的钱叫做本金。4、利息:取款时银行多支付的钱叫做利息。5、利率:利息与本金的比值叫做利率。6、利息的计算公式:利息本金利率时间7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息利息税率=利息(1-利息税率)扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。二、常用统计图的优点
22、:1、条形统计图:可以清楚的看出各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)圆柱与圆锥一、圆柱的特征:1、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。2、圆柱的高:圆柱两个底面之间的距离叫做高。圆柱的高有无数条。3、圆柱的侧面展开图:圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周
23、长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。4、圆柱的侧面积=底面周长高即 S 侧=Ch或 2rh5、圆柱的表面积=圆柱的侧面积+底面积2即 S 表=S 侧+S 底2 或 2rh+2r2126、圆柱的体积=圆柱的底面积高,即 V=sh 或 r2h7、将一张长方形围成圆柱有两种方法,将一张长方形进行旋转一般也有两种。(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是 4 或者比 4 小,都要向前一位进 1。这种取近似值的方法叫做进一法。)二、圆锥的特征:1、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。2、从圆锥的顶点到
24、底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)3、把圆锥的侧面展开得到一个扇形。4、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即 V 锥=31 Sh或 V 锥=31 r2h5、常见的圆柱圆锥解决问题:、压路机压过路面面积(求侧面积);、压路机压过路面长度(求底面周长);、水桶铁皮(求侧面积和一个底面积);、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。6、圆柱和圆锥的特征圆柱圆锥底面两个底面完全相同,都是圆形。一个底面,是圆形。侧面曲面,沿高剪开,展开后是长方形。曲面,沿顶点到底面
25、圆周上的一条线段剪开,展开后是扇形。高两个底面之间的距离,有无数条。顶点到底面圆心的距离,只有一条。常用单位换算长度单位换算1 千米=1000 米 1 米=10 分米1 分米=10 厘米 1 米=100 厘米1 厘米=10 毫米面积单位换算1 平方千米=100 公顷1 公顷=10000 平方米1 平方米=100 平方分米1 平方分米=100 平方厘米1 平方厘米=100 平方毫米体(容)积单位换算1 立方米=1000 立方分米1 立方分米=1000 立方厘米1 立方分米=1 升1 立方厘米=1 毫升1 立方米=1000 升重量单位换算1 吨=1000 千克1 千克=1000 克1 千克=1 公斤人民币单位换算131 元=10 角1 角=10 分1 元=100 分时间单位换算1 世纪=100 年1 年=12 月大月(31 天)有:135781012 月小月(30 天)的有:46911 月平年 2 月 28 天,闰年 2 月 29 天平年全年 365 天,闰年全年 366 天1 日=24 小时1 时=60 分1 分=60 秒1 时=3600 秒