ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:449.50KB ,
资源ID:109751      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-109751-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(优化方案·高中同步测试卷·人教A数学选修2-1:高中同步测试卷(十四) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

优化方案·高中同步测试卷·人教A数学选修2-1:高中同步测试卷(十四) WORD版含答案.doc

1、高考资源网() 您身边的高考专家高中同步测试卷(十四)高考微专题空间向量与立体几何1(2014高考湖北卷)如图,在棱长为2的正方体ABCDA1B1C1D1中E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DPBQ(02)(1)当1时,证明:直线BC1平面EFPQ;(2)是否存在,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由2.如图,在直三棱柱A1B1C1ABC中,ABAC,ABAC2,A1A4,点D是BC的中点(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1所成二面角的正

2、弦值3.(2014高考浙江卷)如图,在四棱锥ABCDE中,平面ABC平面BCDE,CDEBED90,ABCD2,DEBE1,AC.(1)证明:DE平面ACD;(2)求二面角BADE的大小4.如图,在直棱柱ABCDA1B1C1D1中,ADBC,BAD90,ACBD,BC1,ADAA13.(1)证明:ACB1D;(2)求直线B1C1与平面ACD1所成角的正弦值5.如图,在等腰直角三角形ABC中,A 90,BC6,D,E分别是AC,AB上的点,CDBE,O为BC的中点将ADE沿DE折起,得到如图所示的四棱锥ABCDE,其中AO.(1)证明:AO平面BCDE;(2)求二面角ACDB的平面角的余弦值6.

3、如图,四棱柱ABCDA1B1C1D1中,侧棱A1A底面ABCD,ABDC,ABAD,ADCD1,AA1AB2,E为棱AA1的中点(1)证明B1C1CE;(2)求二面角B1CEC1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长7.如图所示,在三棱锥PABQ中,PB平面ABQ,BABPBQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:ABGH;(2)求二面角DGHE的余弦值8.(2014高考江西卷)如图,四棱锥PABCD中,ABCD为矩形平面PAD平面ABCD.(1)

4、求证:ABPD;(2)若BPC90,PB,PC2.问AB为何值时,四棱锥PABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值参考答案与解析1导学号:22280090【解】法一:(1)证明:如图(1),连接AD1,由ABCDA1B1C1D1是正方体,知BC1AD1.当1时,P是DD1的中点,又F是AD的中点,所以FPAD1.所以BC1FP.而FP平面EFPQ,且BC1平面EFPQ,故直线BC1平面EFPQ.(2)如图(2),连接BD.因为E,F分别是AB,AD的中点,所以EFBD,且EFBD.又DPBQ,DPBQ,所以四边形PQBD是平行四边形,故PQBD,且PQBD,从而EFPQ,

5、且EFPQ.在RtEBQ和RtFDP中,因为BQDP,BEDF1,于是EQFP,所以四边形EFPQ是等腰梯形同理可证四边形PQMN是等腰梯形分别取EF,PQ,MN的中点为H,O,G,连接OH,OG,则GOPQ,HOPQ,而GOHOO,故GOH是面EFPQ与面PQMN所成的二面角的平面角若存在,使面EFPQ与面PQMN所成的二面角为直二面角,则GOH90.连接EM,FN,则由EFMN,且EFMN,知四边形EFNM是平行四边形连接GH,因为H,G分别是EF,MN的中点,所以GHME2.在GOH中,GH24,OH2122,OG21(2)2(2)2,由OG2OH2GH2,得(2)224,解得1,故存在

6、1,使面EFPQ与面PQMN所成的二面角为直二面角法二:向量方法:以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图(3)所示的空间直角坐标系Dxyz.由已知得图(3)B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,),(2,0,2),(1,0,),(1,1,0)(1)证明:当1时,(1,0,1),因为(2,0,2),所以2,即BC1FP.而FP平面EFPQ,且BC1平面EFPQ,故直线BC1平面EFPQ.(2)设平面EFPQ的一个法向量为n(x,y,z),则由可得于是可取n(,1)同理可得平面MNPQ的一个法向量为m(2,2,1)若存在

7、,使面EFPQ与面PQMN所成的二面角为直二面角,则mn(2,2,1)(,1)0,即(2)(2)10,解得1.故存在1,使面EFPQ与面PQMN所成的二面角为直二面角2【解】(1)以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以(2,0,4),(1,1,4)因为cos,所以异面直线A1B与C1D所成角的余弦值为.(2)设平面ADC1的法向量为n1(x,y,z),因为(1,1,0),(0,2,4),所以n10,n10,即xy0且y2z0,取z1,得x2,y2,所以,n1(2

8、,2,1)是平面ADC1的一个法向量取平面AA1B的一个法向量为n2(0,1,0),设平面ADC1与平面ABA1所成二面角的大小为.由|cos |,得sin .因此,平面ADC1与平面ABA1所成二面角的正弦值为.3导学号:22280091【解】(1)证明:在直角梯形BCDE中,由DEBE1,CD2,得BDBC.由AC,AB2,得AB2AC2BC2,即ACBC.又平面ABC平面BCDE,从而AC平面BCDE,所以ACDE.又DEDC,从而DE平面ACD.(2)法一:如图,作BFAD,与AD交于点F,过点F作FGDE,与AE交于点G,连接BG,由(1)知DEAD,则FGAD.所以BFG是二面角B

9、ADE的平面角在直角梯形BCDE中,由CD2BC2BD2,得BDBC,又平面ABC平面BCDE,得BD平面ABC,从而BDAB.由于AC平面BCDE,得ACCD.在RtACD中,由DC2,AC,得AD.在RtAED中,由ED1,AD,得AE.在RtABD中,由BD,AB2,AD,得BF,AFAD,从而GF.在ABE,ABG中,利用余弦定理分别可得cosBAE,BG.在BFG中,cosBFG.所以,BFG,即二面角BADE的大小是.法二:以D为原点,分别以射线DE,DC为x,y轴的正半轴,建立空间直角坐标系Dxyz,如图所示由题意知各点坐标如下:D(0,0,0),E(1,0,0),C(0,2,0

10、),A(0,2,),B(1,1,0)设平面ADE的法向量为m(x1,y1,z1),平面ABD的法向量为n(x2,y2,z2),可算得(0,2,),(1,2,),(1,1,0)由得可取m(0,1,)由得可取n(1,1,)于是|cosm,n|.由题意可知,所求二面角是锐角故二面角BADE的大小是.4.【解】(1)证明:易知,AB,AD,AA1两两垂直如图,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系设ABt,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3)从而(

11、t,3,3),(t,1,0),(t,3,0)因为ACBD,所以t2300.解得t或t(舍去)于是(,3,3),(,1,0)因为3300,所以,即ACB1D.(2)由(1)知,(0,3,3),(,1,0),(0,1,0)设n(x,y,z)是平面ACD1的一个法向量,则即令x1,则n(1,)设直线B1C1与平面ACD1所成角为,则sin |cosn,|,即直线B1C1与平面ACD1所成角的正弦值为.5【解】(1)在折叠前的图形中,在等腰直角三角形ABC中,因为BC6,O为BC的中点,所以ACAB3,OCOB3.又因为CDBE,所以ADAE2.如题图,连接OD(图略),在OCD中,由余弦定理可得OD

12、.在折叠后的图形中,因为AD2,所以AO2OD2AD2,所以AOOD.同理可证AOOE.又ODOEO,所以AO平面BCDE.(2)以点O为原点,建立空间直角坐标系Oxyz,如图所示(F为DE的中点),则A(0,0,),C(0,3,0),D(1,2,0),所以(0,0,),(0,3,),(1,2,)设n(x,y,z)为平面ACD的一个法向量,则令z,得n(1,1,),|n|.由(1)知,(0,0,)为平面CDB的一个法向量又|,n010(1)3,所以cosn,即二面角ACDB的平面角的余弦值为.6导学号:22280092【解】如图,以点A为原点,以AD,AA1,AB所在直线为x轴、y轴、z轴建立

13、空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0)(1)证明:易得(1,0,1),(1,1,1),于是0,所以B1C1CE.(2)(1,2,1)设平面B1CE的法向量m(x,y,z),则即消去x,得y2z0,不妨令z1,可得一个法向量为m(3,2,1)由(1)知,B1C1CE,又CC1B1C1,可得B1C1平面CEC1,故(1,0,1)为平面CEC1的一个法向量于是cosm,从而sinm,.所以二面角B1CEC1的正弦值为.(3)(0,1,0),(1,1,1)设(,),01,有(,1,)可取(0,0,2)为平面

14、ADD1A1的一个法向量设为直线AM与平面ADD1A1所成的角,则sin |cos,|.于是,解得(负值舍去),所以AM.7【解】(1)证明:如图,因为D、C、F分别是AQ,BQ、AP,BP的中点,所以EFAB,DCAB.所以EFDC.又EF平面PCD,DC平面PCD.所以EF平面PCD.又EF平面EFQ,平面EFQ平面PCDGH,所以EFGH.又EFAB,所以ABGH.(2)在ABQ中,AQ2BD,ADDQ,所以ABQ90.又PB平面ABQ,所以BA,BQ,BP两两垂直以B为坐标原点,分别以BA,BQ,BP所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系设BABQBP2,则E(1,0

15、,1),F(0,0,1),Q(0,2,0),D(1,1,0),C(0,1,0),P(0,0,2),所以(1,2,1),(0,2,1),(1,1,2),(0,1,2)设平面EFQ的一个法向量为m(x1,y1,z1),由m0,m0,得取y11,得m(0,1,2)设平面PDC的一个法向量为n(x2,y2,z2),由n0,n0,得取z21,得n(0,2,1)所以cosm,n.因为二面角DGHE为钝角,所以二面角DGHE的余弦值为.8导学号:22280093【解】(1)证明:因为四边形ABCD为矩形,故ABAD.又平面PAD平面ABCD,平面PAD平面ABCDAD,所以AB平面PAD,故ABPD.(2)过P作AD的垂线,垂足为O,过O作BC的垂线,垂足为G,连接PG.故PO平面ABCD,BC平面POG,BCPG.在RtBPC中,PG,GC,BG.设ABm,则OP,故四棱锥PABCD的体积为Vm,因为m,故当m,即AB时,四棱锥PABCD的体积最大此时,建立如图所示的坐标系,各点的坐标为O(0,0,0),B,C,D,P.故,(0,0),.设平面BPC的法向量n1(x,y,1),则由n1,n1得解得x1,y0,n1(1,0,1)同理可求出平面DPC的法向量n2.从而平面BPC与平面DPC夹角的余弦值为cos .高考资源网版权所有,侵权必究!

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3