1、第15章复数一、考纲解读由复数在整个高中数学所处的地位看,复数的考查从分值上、难度上在逐渐下降,这也是目前教学内容改革的趋势,在今后的命题中,复数将以填空、选择题的形式出现,由于难度要求降低,将多以考查基本概念、基本运算的题目出现.考查的内容将是复数的基本概念,加、减、乘、除四则运算,复数的向量表示及简单的几何意义,要注意复数问题实数化处理的化归思想、方程思想和数形结合的思想方法.复习时应注意以下几点:(1)了解引进复数的必要性,理解复数的有关概念,掌握复数的代数表示和几何意义. (2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.(3)了解从自然数系到复数系扩充
2、的基本思想.本章涉及到的知识点有:1.复数的概念;2.复数的代数运算;3.复数的向量运算及几何意义;4.复数的三角运算.二、本章复习的重难点是:1.理解复数的定义、代数形式。2.熟练运用复数的四则运算。三、知识要点:1. 虚数的单位为i,它的平方等于1,即.复数及其相关概念: 复数形如a + bi的数(其中); 实数当b = 0时的复数a + bi,即a; 虚数当时的复数a + bi; 纯虚数当a = 0且时的复数a + bi,即bi. 复数a + bi的实部与虚部a叫做复数的实部,b叫做虚部(注意a,b都是实数) 复数集C全体复数的集合,一般用字母C表示.两个复数相等的定义:.两个复数,如果
3、不全是实数,就不能比较大小.注:若为复数,则若,则.()为复数,而不是实数若,则.()若,则是的必要不充分条件.(当,时,上式成立)2. 复平面内的两点间距离公式:.其中是复平面内的两点所对应的复数,间的距离.由上可得:复平面内以为圆心,为半径的圆的复数方程:.3. 共轭复数的性质: ,(a + bi) () 注:两个共轭复数之差是纯虚数. ()之差可能为零,此时两个复数是相等的4. 复数的乘方:对任何,及有 注:以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如若由就会得到的错误结论.在实数集成立的. 当为虚数时,所以复数集内解方程不能采用两边平方法.常用的结论: 若是1的立方虚数根,即,则 .7. 复数集中解一元二次方程:在复数集内解关于的一元二次方程时,应注意下述问题:当时,若0,则有二不等实数根;若=0,则有二相等实数根;若0,则有二相等复数根(为共轭复数).当不全为实数时,不能用方程根的情况.不论为何实数,都可用求根公式求根,并且韦达定理也成立.