ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:309.50KB ,
资源ID:1092000      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1092000-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《新步步高》2017版高考数学北师大版(理)一轮复习 第3章 导数及其应用 3.2 课时2导数与函数的极值、最值 文档.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《新步步高》2017版高考数学北师大版(理)一轮复习 第3章 导数及其应用 3.2 课时2导数与函数的极值、最值 文档.doc

1、课时2导数与函数的极值、最值题型一用导数解决函数极值问题命题点1根据函数图像判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图像如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(2)D.函数f(x)有极大值f(2)和极小值f(2)答案D解析由题图可知,当x0;当2x1时,f(x)0;当1x2时,f(x)2时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值.命题点2求函数的极值例2已知函数f(x)ax33x

2、21(aR且a0),求函数f(x)的极大值与极小值.解由题设知a0,f(x)3ax26x3ax.令f(x)0得x0或.当a0时,随着x的变化,f(x)与f(x)的变化情况如下:x(,0)0(0,)(,)f(x)00f(x)极大值极小值f(x)极大值f(0)1,f(x)极小值f1.当a0时,随着x的变化,f(x)与f(x)的变化情况如下:x(,)(,0)0(0,)f(x)00f(x)极小值极大值f(x)极大值f(0)1,f(x)极小值f1.综上,f(x)极大值f(0)1,f(x)极小值f1.命题点3已知极值求参数例3(1)已知f(x)x33ax2bxa2在x1时有极值0,则ab_.(2)若函数f

3、(x)x2x1在区间(,3)上有极值点,则实数a的取值范围是()A.(2,) B.2,)C.(2,) D.2,)答案(1)7(2)C解析(1)由题意得f(x)3x26axb,则解得或经检验当a1,b3时,函数f(x)在x1处无法取得极值,而a2,b9满足题意,故ab7.(2)若函数f(x)在区间(,3)上无极值,则当x(,3)时,f(x)x2ax10恒成立或当x(,3)时,f(x)x2ax10恒成立.当x(,3)时,yx的值域是2,);当x(,3)时,f(x)x2ax10,即ax恒成立,a2;当x(,3)时,f(x)x2ax10,即ax恒成立,a.因此要使函数f(x)在(,3)上有极值点,实数

4、a的取值范围应是(2,).思维升华(1)求函数f(x)极值的步骤:确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;列表检验f(x)在f(x)0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值.(2)若函数yf(x)在区间(a,b)内有极值,那么yf(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.(1)函数y2x的极大值是_.(2)设f(x)ln(1x)xax2,若f(x)在x1处取得极值,则a的值为_.答案(1)3(2)解析(1)y2,令y0,得x1.当x0;当x1时,y0.当x1时

5、,y取极大值3.(2)由题意知,f(x)的定义域为(1,),且f(x)2ax1,由题意得:f(1)0,即2a2a10,解得a,又当a时,f(x),当0x1时,f(x)1时,f(x)0,所以f(1)是函数f(x)的极小值,所以a.题型二用导数求函数的最值例4已知aR,函数f(x)lnx1.(1)当a1时,求曲线yf(x)在点(2,f(2)处的切线方程;(2)求f(x)在区间(0,e上的最小值.解(1)当a1时,f(x)lnx1,x(0,),所以f(x),x(0,).因此f(2),即曲线yf(x)在点(2,f(2)处的切线斜率为.又f(2)ln2,所以曲线yf(x)在点(2,f(2)处的切线方程为

6、y(ln2)(x2),即x4y4ln240.(2)因为f(x)lnx1,所以f(x).令f(x)0,得xa.若a0,则f(x)0,f(x)在区间(0,e上单调递增,此时函数f(x)无最小值.若0ae,当x(0,a)时,f(x)0,函数f(x)在区间(a,e上单调递增,所以当xa时,函数f(x)取得最小值lna.若ae,则当x(0,e时,f(x)0,函数f(x)在区间(0,e上单调递减,所以,当xe时,函数f(x)取得最小值.综上可知,当a0时,函数f(x)在区间(0,e上无最小值;当0a),当x(2,0)时,f(x)的最小值为1,则a的值等于()A.B.C.D.1答案D解析由题意知,当x(0,

7、2)时,f(x)的最大值为1.令f(x)a0,得x,当0x0;当x时,f(x)0)的导函数yf(x)的两个零点为3和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为e3,求f(x)在区间5,)上的最大值.解(1)f(x).令g(x)ax2(2ab)xbc,因为ex0,所以yf(x)的零点就是g(x)ax2(2ab)xbc的零点,且f(x)与g(x)符号相同.又因为a0,所以3x0,即f(x)0,当x0时,g(x)0,即f(x)5f(0),所以函数f(x)在区间5,)上的最大值是5e5.思维升华求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和

8、极值情况,画出函数的大致图像,然后借助图像观察得到函数的最值.已知函数f(x)x3ax24在x2处取得极值,若m、n1,1,则f(m)f(n)的最小值是()A.13B.15C.10D.15答案A解析对函数f(x)求导得f(x)3x22ax,由函数f(x)在x2处取得极值知f(2)0,即342a20,a3.由此可得f(x)x33x24,f(x)3x26x,易知f(x)在1,0)上单调递减,在0,1上单调递增,当m1,1时,f(m)minf(0)4.又f(x)3x26x的图像开口向下,且对称轴为x1,当n1,1时,f(n)minf(1)9.故f(m)f(n)的最小值为13.3.利用导数求函数的最值

9、问题典例(12分)已知函数f(x)lnxax (aR).(1)求函数f(x)的单调区间;(2)当a0时,求函数f(x)在1,2上的最小值.思维点拨(1)已知函数解析式求单调区间,实质上是求f(x)0,f(x)0),当a0时,f(x)a0,即函数f(x)的单调递增区间为(0,).2分当a0时,令f(x)a0,可得x,当0x0;当x时,f(x)0时,函数f(x)的单调递增区间为,单调递减区间为.5分(2)当1,即a1时,函数f(x)在区间1,2上是减函数,所以f(x)的最小值是f(2)ln22a.6分当2,即0a时,函数f(x)在区间1,2上是增函数,所以f(x)的最小值是f(1)a.7分当12,

10、即a1时,函数f(x)在上是增函数,在上是减函数.又f(2)f(1)ln2a,所以当aln2时,最小值是f(1)a;当ln2a1时,最小值为f(2)ln22a.11分综上可知,当0a0,函数单调递增;当x(1,e时,y0,函数单调递减.当x1时,函数取得最大值1.3.设函数f(x)在R上可导,其导函数为f(x),且函数f(x)在x2处取得极小值,则函数yxf(x)的图像可能是()答案C解析由函数f(x)在x2处取得极小值,可得f(2)0,且当x(a,2)(a2)时,f(x)单调递减,即f(x)2)时,f(x)单调递增,即f(x)0.所以函数yxf(x)在区间(a,2)(a2)内的函数值为正,在

11、区间(2,b)(2b0,即a23a180.a6或a0时,ex1,aex1.8.已知f(x)x36x29xabc,ab0;f(0)f(1)0;f(0)f(3)0.其中正确结论的序号是_.答案解析f(x)3x212x93(x1)(x3),由f(x)0,得1x0,得x3,f(x)在区间(1,3)上是减函数,在区间(,1),(3,)上是增函数.又ab0,y极小值f(3)abc0,0abc4.a,b,c均大于零,或者a0,b0.又x1,x3为函数f(x)的极值点,后一种情况不可能成立,如图.f(0)0,f(0)f(1)0,正确结论的序号是.9.设f(x)a(x5)26lnx,其中aR,曲线yf(x)在点

12、(1,f(1)处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.解(1)因为f(x)a(x5)26lnx,所以f(x)2a(x5).令x1,得f(1)16a,f(1)68a,所以曲线yf(x)在点(1,f(1)处的切线方程为y16a(68a)(x1),由点(0,6)在切线上,可得616a8a6,故a.(2)由(1)知,f(x)(x5)26lnx(x0),f(x)x5.令f(x)0,解得x2或3.当0x3时,f(x)0,故f(x)在(0,2),(3,)上为增函数;当2x3时,f(x)0,故f(x)在(2,3)上为减函数.由此可知f(x)在x2处取得极大值f

13、(2)6ln2,在x3处取得极小值f(3)26ln3.综上,f(x)的单调增区间为(0,2),(3,),单调减区间为(2,3),f(x)的极大值为6ln2,极小值为26ln3.10.已知函数f(x)(xk)ex.(1)求f(x)的单调区间;(2)求f(x)在区间0,1上的最小值.解(1)由题意知f(x)(xk1)ex.令f(x)0,得xk1.f(x)与f(x)随x的变化情况如下表:x(,k1)k1(k1,)f(x)0f(x)ek1所以,f(x)的单调递减区间是(,k1);单调递增区间是(k1,).(2)当k10,即k1时,f(x)在0,1上单调递增,所以f(x)在区间0,1上的最小值为f(0)

14、k;当0k11,即1k2时,f(x)在0,k1上单调递减,在k1,1上单调递增,所以f(x)在区间0,1上的最小值为f(k1)ek1;当k11,即k2时,f(x)在0,1上单调递减,所以f(x)在区间0,1上的最小值为f(1)(1k)e.综上,当k1时,f(x)在0,1上的最小值为f(0)k;当1k1,则不等式exf(x)ex1的解集是()A.x|x0B.x|x0C.x|x1D.x|x1或0x1,可得到g(x)0,所以g(x)为R上的增函数;又g(0)e0f(0)e010,所以exf(x)ex1,即g(x)0的解集为x|x0.12.设函数f(x)ax2bxc(a,b,cR),若x1为函数f(x

15、)ex的一个极值点,则下列图像不可能为yf(x)图像的是()答案D解析设h(x)f(x)ex,则h(x)(2axb)ex(ax2bxc)ex(ax22axbxbc)ex.x1为函数f(x)ex的一个极值点,ca0,ca.f(x)ax2bxa.若方程ax2bxa0有两根x1,x2,则x1x21,D中图像一定不满足条件.13.已知函数f(x)x33axb(a0)的极大值为6,极小值为2,则f(x)的单调递减区间是_.答案(1,1)解析令f(x)3x23a0,得x,则f(x),f(x)随x的变化情况如下表:x(,)(,)(,)f(x)00f(x)极大值极小值从而解得所以f(x)的单调递减区间是(1,

16、1).14.若函数f(x)x33x在(a,6a2)上有最小值,则实数a的取值范围是_.答案2,1)解析f(x)3x230,得x1,且x1为函数的极小值点,x1为函数的极大值点.函数f(x)在区间(a,6a2)上有最小值,则函数f(x)极小值点必在区间(a,6a2)内,即实数a满足a16a2且f(a)a33af(1)2.解a16a2,得a0,当且仅当2e2x2e2x,即x0时,“”成立.故f(x)在R上为增函数.(3)由(1)知f(x)2e2x2e2xc,而2e2x2e2x24,当x0时等号成立.下面分三种情况进行讨论:当c0,此时f(x)无极值;当c4时,对任意x0,f(x)2e2x2e2x40,此时f(x)无极值;当c4时,令e2xt,注意到方程2tc0有两根t10,t20,即f(x)0有两个根x1lnt1,x2lnt2.当x1xx2时,f(x)x2时,f(x)0,当x0,从而f(x)在xx1处取得极大值,在xx2处取得极小值.综上,若f(x)有极值,则c的取值范围为(4,).

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3