1、第一章 1.2 1.2. 1(二)1若角的余弦线是单位长度的有向线段,那么角的终边在()Ay轴上Bx轴上C直线yx上 D直线yx上解析:由题意得|cos |1,即cos 1,角的终边在x轴上,故选B.答案:B2若是第一象限角,则sin cos 的值与1的大小关系是()Asin cos 1 Bsin cos 1Csin cos 1 D不能确定解析:如图,角的终边与单位圆交于P点,过P作PMx轴于M点,由三角形两边之和大于第三边可知sin cos 1.故选A.答案:A3角和角有相同的()A正弦线 B余弦线C正切线 D不能确定解析:与的终边在同一条直线上,过点A(1,0)作单位圆的切线,与该直线只有
2、一个交点T.答案:C4利用三角函数线,sin x的解集为_解析:如图,值为的正弦线为M1P1和M2P2,易得出M2OP2,M2OP1,故满足sin x的x的集合为.答案:5设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:MPOM0;OM0MP;OMMP0;MP0OM,其中正确的是_解析:sinMP0,cosOM0.答案:6作出下列各角的正弦线、余弦线、正切线:(1);(2).解:(时间:30分钟满分:60分)知识点及角度难易度及题号基础中档稍难解三角方程8.(1)解三角不等式5、6、7、8.(2)4比较大小3三角函数线的综合应用129、10一、选择题(每小题4分,共16分)1下列四个
3、命题中:()一定时,单位圆中的正弦线一定;单位圆中,有相同正弦线的角相等;和有相同的正切线;具有相同正切线的两个角终边在同一条直线上不正确命题的个数是()A0B1C2D3解析:单位圆中, 与有相同的正弦线,但,错;时,与都不存在正切线,错,与正确答案:C2已知为锐角,则下列选项提供的各值中,可能为sin cos 的值的是()A. B. C. D.解析:在单位圆中借助三角函数线可得sin cos 1.答案:A3若,则下列不等式成立的是()Asin cos tan Bcos tan sin Csin tan cos Dtan sin cos 解析:结合单位圆中正弦线、余弦线、正切线可知,此时正切线
4、最长,余弦线最短,且都为正,故tan sin cos .答案:D4设0cos ,则的取值范围是()A. B.C. D.解析:sin cos ,当cos 0,sin 0时,显然成立,由图知的取值范围是当cos 0,sin 0时,显然成立,此时当sin 0,cos 0时,00的解集为_解析:不等式的解集如图所示(阴影部分),答案:.三、解答题8(10分)利用三角函数线求满足下列条件的角的集合(1)tan 1;(2)sin .解:(1)如图所示,过点(1,1)和原点作直线交单位圆于点P和P,则OP和OP就是角的终边,xOP,xOP,满足条件的所有角的集合是.(2)如图所示,过点作x轴的平行线,交单位
5、圆于点P和P,则sinxOPsinxOP,xOP,xOP,满足条件的所有角的集合是9.(10分)如图所示,已知单位圆O与y轴交于A、B两点,角的顶点为原点,始边在x轴的非负半轴上,终边在射线OM上,过点A作直线AC垂直于y轴与角的终边OM交于点C,则有向线段AC表示的函数值是什么?解:设单位圆与x轴正半轴交于D,过D作DT垂直x轴交CO的延长线于T,过C作CEx轴交x轴于E,如图由图可得OCEOTD,又CEOAOD1.OEAC.根据任意角的三角函数的定义可得tan DT.AC.10(12分)用单位圆及三角函数线证明:正弦函数在上是增函数证明:设012,分别作1,2的正弦线如图所示:sin 1M1P1,sin 2M2P2.012,M1P1M2P2,即sin 1sin 2,正弦函数在上为增函数高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 ) 高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )