ImageVerifierCode 换一换
格式:DOCX , 页数:45 ,大小:210.56KB ,
资源ID:1088209      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1088209-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版高考数学培优考前练理科通用版练习:7-3 解析几何(压轴题) WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020版高考数学培优考前练理科通用版练习:7-3 解析几何(压轴题) WORD版含解析.docx

1、7.3解析几何(压轴题)命题角度1曲线与轨迹问题高考真题体验对方向1.(2017全国20)设O为坐标原点,动点M在椭圆C:x22+y2=1上,过M作x轴的垂线,垂足为N,点P满足NP=2 NM.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且OPPQ=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.(1)解设P(x,y),M(x0,y0),则N(x0,0),NP=(x-x0,y),NM=(0,y0).由NP=2 NM得x0=x,y0=22y.因为M(x0,y0)在C上,所以x22+y22=1.因此点P的轨迹方程为x2+y2=2.(2)证明由题意知F(-1,0).设Q(-3,t),P

2、(m,n),则OQ=(-3,t),PF=(-1-m,-n),OQPF=3+3m-tn,OP=(m,n),PQ=(-3-m,t-n).由OPPQ=1得-3m-m2+tn-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0.所以OQPF=0,即OQPF.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.2.(2016全国20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明:ARFQ;(2)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程.(1)证

3、明由题知F12,0.设l1:y=a,l2:y=b,则ab0,且Aa22,a,Bb22,b,P-12,a,Q-12,b,R-12,a+b2.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1=a-b1+a2=a-ba2-ab=1a=-aba=-b=k2.所以ARFQ.(2)解设l与x轴的交点为D(x1,0),则SABF=12|b-a|FD|=12|b-a|x1-12,SPQF=|a-b|2.由题设可得12|b-a|x1-12=|a-b|2,所以x1=0(舍去),x1=1.设满足条件的AB的中点为E(

4、x,y).当AB与x轴不垂直时,由kAB=kDE可得2a+b=yx-1(x1).而a+b2=y,所以y2=x-1(x1).当AB与x轴垂直时,E与D重合.所以所求轨迹方程为y2=x-1.典题演练提能刷高分1.(2019西南名校联盟重庆第八中学高三5月月考六)设抛物线C1的方程为x2=4y,点M(x0,y0)(x00)在抛物线C2:x2=-y上,过M作抛物线C1的切线,切点分别为A,B,圆N是以线段AB为直径的圆.(1)若点M的坐标为(2,-4),求此时圆N的半径长;(2)当M在x2=-y上运动时,求圆心N的轨迹方程.解(1)设N(x,y),Ax1,x124,Bx2,x224,x1x2,切线MA

5、,MB的方程分别为y=x12(x-x1)+x124,y=x22(x-x2)+x224,得MA,MB的交点M(x0,y0)的坐标为x0=x1+x22=2,y0=x1x24=-4.又kAB=x224-x124x2-x1=x1+x24=1,|AB|=1+k2(x1+x2)2-4x1x2=410,r=12|AB|=210.(2)N为线段AB的中点,x=x1+x22,y=x12+x228.点M在C2上,即x02=-y0.由(1)得x1+x222=-x1x24,则x1+x222=-(x1+x2)2-(x12+x22)8.x2=-4x2-8y8,x0,即x2=23y(x0).圆心N的轨迹方程为x2=23y(

6、x0).2.已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-34.(1)求点P的轨迹C的方程;(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记QF1O与PF1R的面积之和为S,求S的最大值.解(1)设P(x,y),A(-2,0),B(2,0),k1=yx+2,k2=yx-2,又k1k2=-34,y2x2-4=-34,x24+y23=1(x2),轨迹C的方程为x24+y23=1(x2).(2)由O,R分别为F1F2,PF2的中点,故ORPF1,故PF1R与PF1O同底等高,故SPF1R

7、=SPF1O,S=SQF1O+SPF1E=SPQO,当直线PQ的斜率不存在时,其方程为x=-1,此时SPQO=12132-32=32;当直线PQ的斜率存在时,设其方程为y=k(x+1),设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k0;联立y=k(x+1),x24+y23=1,解得(3+4k2)x2+8k2x+4k2-12=0,=144(k2+1)0,x1+x2=-8k23+4k2,x1x2=4k2-123+4k2,故|PQ|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=12(1+k2)3+4k2,点O到直线PQ的距离d=|k|1+k2,S=12|PQ|

8、d=6k2(k2+1)(3+4k2)2,令u=3+4k2(3,+),故S=6u-34u+14u2=32-3u2-2u+10,32,故S的最大值为32.3.已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P.(1)求点P的轨迹E的方程;(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1l2,垂足为W(Q,R,S,T为不同的四个点).设W(x0,y0),证明:x022+y02|CD|=2,由椭圆定义可知,点P的轨迹E是椭圆,a=2,c=1,b=2-1=1,E的方程为x22+y2=1.(2)证明由已知条件可知,垂足W在以CD为直径的圆周

9、上,则有x02+y02=1,又因Q,R,S,T为不同的四个点,x022+y021.解若l1或l2的斜率不存在,四边形QRST的面积为2.若两条直线的斜率都存在,设l1的斜率为k,则l1的方程为y=k(x+1),解方程组y=k(x+1),x22+y2=1,得(2k2+1)x2+4k2x+2k2-2=0,则|QS|=22k2+12k2+1,同理得|RT|=22k2+1k2+2,SQSRT=12|QS|RT|=4(k2+1)2(2k2+1)(k2+2)4(k2+1)22k2+1+k2+222=169,当且仅当2k2+1=k2+2,即k=1时等号成立.综上所述,当k=1时,四边形QRST的面积取得最小

10、值169.4.设点A为圆C:x2+y2=4上的动点,点A在x轴上的投影为Q,动点M满足2MQ=AQ,动点M的轨迹为E.(1)求E的方程;(2)设E与y轴正半轴的交点为B,过点B的直线l的斜率为k(k0),l与E交于另一点P.若以点B为圆心,以线段BP长为半径的圆与E有4个公共点,求k的取值范围.解(1)设点M(x,y),A(x1,y1),则Q(x1,0),因为2MQ=AQ,所以2(x1-x,-y)=(0,-y1),所以2(x1-x)=0,-2y=-y1,解得x1=x,y1=2y.由于点A在圆C:x2+y2=4上,所以x2+4y2=4,所以点M的轨迹E的方程为x24+y2=1.(2)由(1)知,

11、E的方程为x24+y2=1,因为直线l:y=kx+1(k0).由y=kx+1,x24+y2=1得(1+4k2)x2+8kx=0.设B(x1,y1),P(x2,y2),因此x1=0,x2=-8k1+4k2,|BP|=1+k2|x1-x2|=8|k|1+4k21+k2,则点P的轨迹方程为x2+(y-1)2=64k2(1+k2)(1+4k2)2,由x2+(y-1)2=64k2(1+k2)(1+4k2)2,x2+4y2=4,得3y2+2y-5+64k2(1+k2)(1+4k2)2=0(-1y1),(*)依题意得,(*)式关于y的方程在(-1,1)有两个不同的实数解,设f(x)=3x2+2x-5+64k

12、2(1+k2)(1+4k2)2(-1x0,f(-1)0,整理得4k4-4k2+10,-4+64k2(1+k2)(1+4k2)20,即4k4-4k2+10,12k4+8k2-10,所以k212,k218.解得k-,-22-22,-2424,2222,+,所以k的取值范围为-,-22-22,-2424,2222,+.命题角度2直线与圆锥曲线的位置关系高考真题体验对方向1.(2019全国19)已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若AP=3PB,求|AB|.解设直线l:y=32x+t,A(x1,y

13、1),B(x2,y2).(1)由题设得F34,0,故|AF|+|BF|=x1+x2+32,由题设可得x1+x2=52.由y=32x+t,y2=3x可得9x2+12(t-1)x+4t2=0,则x1+x2=-12(t-1)9.从而-12(t-1)9=52,得t=-78.所以l的方程为y=32x-78.(2)由AP=3PB可得y1=-3y2.由y=32x+t,y2=3x可得y2-2y+2t=0.所以y1+y2=2.从而-3y2+y2=2,故y2=-1,y1=3.代入C的方程得x1=3,x2=13.故|AB|=4133.2.(2019天津18)设椭圆x2a2+y2b2=1(ab0)的左焦点为F,上顶点

14、为B.已知椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若|ON|=|OF|(O为原点),且OPMN,求直线PB的斜率.解(1)设椭圆的半焦距为c,依题意,2b=4,ca=55,又a2=b2+c2,可得a=5,b=2,c=1.所以,椭圆的方程为x25+y24=1.(2)由题意,设P(xP,yP)(xP0),M(xM,0).设直线PB的斜率为k(k0),又B(0,2),则直线PB的方程为y=kx+2,与椭圆方程联立y=kx+2,x25+y24=1,整理得(4+5k2)x2+20kx=0,可得xP

15、=-20k4+5k2,代入y=kx+2得yP=8-10k24+5k2,进而直线OP的斜率yPxP=4-5k2-10k.在y=kx+2中,令y=0,得xM=-2k.由题意得N(0,-1),所以直线MN的斜率为-k2.由OPMN,得4-5k2-10k-k2=-1,化简得k2=245,从而k=2305.所以,直线PB的斜率为2305或-2305.3.(2018全国19)设椭圆C:x22+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:OMA=OMB.(1)解由已知得F(1,0),l的方程为x=1.由已

16、知可得,点A的坐标为1,22或1,-22.所以AM的方程为y=-22x+2或y=22x-2.(2)证明当l与x轴重合时,OMA=OMB=0,当l与x轴垂直时,OM为AB的垂直平分线,所以OMA=OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k0),A(x1,y1),B(x2,y2),则x12,x20)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.解(1)由题意得F(1,0),l的方程为y=k(x-1)(k0).设A(x1,y1),B(x2,y2).由y=k(x-1),y2=4x得k2x2-(2k2+4)x+k2=0

17、.=16k2+160,故x1+x2=2k2+4k2.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=4k2+4k2.由题设知4k2+4k2=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则y0=-x0+5,(x0+1)2=(y0-x0+1)22+16.解得x0=3,y0=2或x0=11,y0=-6.因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.5.(2018全国20)已知斜率为k的

18、直线l与椭圆C:x24+y23=1交于A,B两点,线段AB的中点为M(1,m)(m0).(1)证明:k-12;(2)设F为C的右焦点,P为C上一点,且FP+FA+FB=0.证明:|FA|,|FP|,|FB|成等差数列,并求该数列的公差.(1)证明设A(x1,y1),B(x2,y2),则x124+y123=1,x224+y223=1.两式相减,并由y1-y2x1-x2=k得x1+x24+y1+y23k=0.由题设知x1+x22=1,y1+y22=m,于是k=-34m.由题设得0m32,故k-12.(2)解由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-

19、1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2mb0)的左焦点为F,上顶点为A,长轴长为26,B为直线l:x=-3上的动点,M(m,0),AMBM.当ABl时,M与F重合.(1)求椭圆的方程;(2)若直线BM交椭圆于P,Q两点,若APAQ,求m的值.解(1)依题意得A(0,b),F(-c,0),当ABl时,B(-3,b),由AFBF,得kAFkBF=bcb-3+c=-1,又b2+c2=6,解得c=2,b=2.所以,椭圆的方程为x26+y22=1.(2)由(1)得A(0,2),依题意,显然m0,所以kAM=-2m,又AMBM,所以kBM=m2,

20、所以直线BM的方程为y=m2(x-m),设P(x1,y1),Q(x2,y2).联立y=m2(x-m),x26+y22=1,有(2+3m2)x2-6m3x+3m4-12=0,x1+x2=6m32+3m2,x1x2=3m4-122+3m2.|PM|QM|=1+m22|(x1-m)(x2-m)|=1+m22|x1x2-m(x1+x2)+m2|=1+m22|2m2-12|2+3m2=(2+m2)|m2-6|2+3m2,|AM|2=2+m2,由APAQ得,|AM|2=|PM|QM|,所以|m2-6|2+3m2=1,解得m=1.2.(2019江西抚州临川第一中学高三下学期考前模拟)在平面直角坐标系xOy中

21、,椭圆C过点3,12,焦点F1(-3,0),F2(3,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P,直线l与椭圆C交于A,B两点.若OAB的面积为267,求直线l的方程.解(1)因为椭圆C的焦点为F1(-3,0),F2(3,0),可设椭圆C的方程为x2a2+y2b2=1(ab0).又点3,12在椭圆C上,所以3a2+14b2=1,a2-b2=3,解得a2=4,b2=1.因此,椭圆C的方程为x24+y2=1.因为圆O的直径为F1F2,所以其方程为x2+y2=3.(2)设直线l与圆O相切于P(x0,y0)(x00,y00),则x02+y02=3

22、.所以直线l的方程为y=-x0y0(x-x0)+y0,即y=-x0y0x+3y0.由x24+y2=1,y=-x0y0x+3y0,消去y,得(4x02+y02)x2-24x0x+36-4y02=0.因为OAB的面积为267,所以12ABOP=267,从而|AB|=427.设A(x1,y1),B(x2,y2),由得x=24x048y02(x02-2)2(4x02+y02),所以AB2=(x1-x2)2+(y1-y2)2=1+x02y0248y02(x02-2)(4x02+y02)2.因为x02+y02=3,所以AB2=16(x02-2)(x02+1)2=3249,即2x04-45x02+100=0

23、,解得x02=52或x02=20(舍去后者),则y02=12,因此,点P的坐标为102,22.故直线l的方程为:y=-5x+32.3.椭圆E:x2a2+y2b2=1(ab0)的左、右焦点分别为F1,F2,过F2作垂直于x轴的直线l与椭圆E在第一象限交于点P,若|PF1|=5,且3a=b2.(1)求椭圆E的方程;(2)A,B是椭圆C上位于直线l两侧的两点.若直线AB过点(1,-1),且APF2=BPF2,求直线AB的方程.解(1)由题意可得|PF2|=b2a=3,因为|PF1|=5,由椭圆的定义得a=4,所以b2=12,所以椭圆E的方程为x216+y212=1.(2)易知点P的坐标为(2,3).

24、因为APF2=BPF2,所以直线PA,PB的斜率之和为0.设直线PA的斜率为k,则直线PB的斜率为-k,设A(x1,y1),B(x2,y2),则直线PA的方程为y-3=k(x-2),由y-3=k(x-2),x216+y212=1,可得(3+4k2)x2+8k(3-2k)x+4(3-2k)2-48=0,x1+2=8k(2k-3)3+4k2.同理,直线PB的方程为y-3=-k(x-2),可得x2+2=-8k(-2k-3)3+4k2=8k(2k+3)3+4k2,x1+x2=16k2-123+4k2,x1-x2=-48k3+4k2,kAB=y1-y2x1-x2=k(x1-2)+3+k(x2-2)-3x

25、1-x2=k(x1+x2)-4kx1-x2=12,满足条件的直线AB的方程为y+1=12(x-1),即为x-2y-3=0.命题角度3圆锥曲线的最值、范围问题高考真题体验对方向1.(2019全国21)已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-12.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连接QE并延长交C于点G.证明:PQG是直角三角形;求PQG面积的最大值.解(1)由题设得yx+2yx-2=-12,化简得x24+y22=1(|x|2),所以C为中心在坐标原点,

26、焦点在x轴上的椭圆,不含左右顶点.(2)设直线PQ的斜率为k,则其方程为y=kx(k0).由y=kx,x24+y22=1,得x=21+2k2.记u=21+2k2,则P(u,uk),Q(-u,-uk),E(u,0).于是直线QG的斜率为k2,方程为y=k2(x-u).由y=k2(x-u),x24+y22=1,得(2+k2)x2-2uk2x+k2u2-8=0.()设G(xG,yG),则-u和xG是方程()的解,故xG=u(3k2+2)2+k2,由此得yG=uk32+k2.从而直线PG的斜率为uk32+k2-uku(3k2+2)2+k2-u=-1k.所以PQPG,即PQG是直角三角形.由得|PQ|=

27、2u1+k2,|PG|=2ukk2+12+k2,所以PQG的面积S=12|PQ|PG|=8k(1+k2)(1+2k2)(2+k2)=8(1k+k)1+2(1k+k)2.设t=k+1k,则由k0,得t2,当且仅当k=1时取等号.因为S=8t1+2t2在区间2,+)内单调递减,所以当t=2,即k=1时,S取得最大值,最大值为169.因此,PQG面积的最大值为169.2.(2019浙江21)如图,已知点F(1,0)为抛物线y2=2px(p0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记AFG,CQG的面积分别为S1,

28、S2.(1)求p的值及抛物线的准线方程;(2)求S1S2的最小值及此时点G的坐标.解(1)由题意得p2=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A(xA,yA),B(xB,yB),C(xC,yC),重心G(xG,yG).令yA=2t,t0,则xA=t2.由于直线AB过F,故直线AB方程为x=t2-12ty+1,代入y2=4x,得y2-2(t2-1)ty-4=0,故2tyB=-4,即yB=-2t,所以B1t2,-2t.又由于xG=13(xA+xB+xC),yG=13(yA+yB+yC)及重心G在x轴上,故2t-2t+yC=0,得C1t-t2,21t-t,G2t4-2t2+23t2

29、,0.所以,直线AC方程为y-2t=2t(x-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t22.从而S1S2=12|FG|yA|12|QG|yC|=2t4-2t2+23t2-1|2t|t2-1-2t4-2t2+23t22t-2t=2t4-t2t4-1=2-t2-2t4-1.令m=t2-2,则m0,S1S2=2-mm2+4m+3=2-1m+3m+42-12m3m+4=1+32.当m=3时,S1S2取得最小值1+32,此时G(2,0).3.(2017山东21)在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(ab0)的离心率为22,焦距为2.(1)求椭圆E的方程.(2)如图,动

30、直线l:y=k1x-32交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=24,M是线段OC延长线上一点,且|MC|AB|=23,M的半径为|MC|,OS,OT是M的两条切线,切点分别为S,T,求SOT的最大值并求取得最大值时直线l的斜率.解(1)由题意知e=ca=22,2c=2,所以a=2,b=1,因此椭圆E的方程为x22+y2=1.(2)设A(x1,y1),B(x2,y2),联立方程x22+y2=1,y=k1x-32,得(4k12+2)x2-43k1x-1=0,由题意知0,且x1+x2=23k12k12+1,x1x2=-12(2k12+1).所以|AB|=1+k12

31、|x1-x2|=21+k121+8k121+2k12.由题意可知圆M的半径r为r=23|AB|=2231+k121+8k122k12+1.由题设知k1k2=24,所以k2=24k1,因此直线OC的方程为y=24k1x.联立方程x22+y2=1,y=24k1x1,得x2=8k121+4k12,y2=11+4k12,因此|OC|=x2+y2=1+8k121+4k12.由题意可知sin SOT2=rr+|OC|=11+|OC|r,而|OC|r=1+8k121+4k122231+k121+8k121+2k12=3241+2k121+4k121+k12,令t=1+2k12,则t1,1t(0,1),因此|

32、OC|r=32t2t2+t-1=3212+1t-1t2=321-1t-122+941,当且仅当1t=12,即t=2时等号成立,此时k1=22,所以sin SOT212,因此SOT26.所以SOT最大值为3.综上所述:SOT的最大值为3,取得最大值时直线l的斜率为k1=22.典题演练提能刷高分1.已知抛物线C:y2=2px(p0)的焦点为F,准线为l,过焦点F的直线交C于A(x1,y1),B(x2,y2)两点,y1y2=-4.(1)求抛物线方程;(2)点B在准线l上的投影为E,D是C上一点,且ADEF,求ABD面积的最小值及此时直线AD的方程.解(1)依题意Fp2,0,当直线AB的斜率不存在时,

33、|y1y2|=-p2=-4,p=2.当直线AB的斜率存在时,设AB:y=kx-p2,由y2=2px,y=kx-p2,化简得y2-2pky-p2=0.由y1y2=-4,得p2=4,p=2,所以抛物线方程为y2=4x.(2)设D(x0,y0),Bt24,t,则E(-1,t).又由y1y2=-4,可得A4t2,-4t.因为kEF=-t2,ADEF,所以kAD=2t,故直线AD:y+4t=2tx-4t2.由y2=4x,2x-ty-4-8t2=0,化简得y2-2ty-8-16t2=0,所以y1+y0=2t,y1y0=-8-16t2.所以|AD|=1+t24|y1-y0|=1+t24(y1+y0)2-4y

34、1y0=4+t2t2+16t2+8.设点B到直线AD的距离为d,则d=t22-t2-4-8t24+t2=t2+16t2+824+t2.所以SABD=12|AD|d=14t2+16t2+8316,当且仅当t4=16,即t=2.当t=2时,直线AD的方程为x-y-3=0,当t=-2时,直线AD的方程为x+y-3=0.2.在平面直角坐标系xOy中,抛物线C1:x2=4y,直线l与抛物线C1交于A,B两点.(1)若直线OA,OB的斜率之积为-14,证明:直线l过定点;(2)若线段AB的中点M在曲线C2:y=4-14x2(-22x0,x1+x2=4k,x1x2=-4m,kOAkOB=y1y2x1x2=1

35、4x1214x22x1x2=x1x216=-m4,由已知:kOAkOB=-14,所以m=1,所以直线l的方程为y=kx+1,所以直线l过定点(0,1).(2)解设M(x0,y0),则x0=x1+x22=2k,y0=kx0+m=2k2+m,将M(x0,y0)代入C2:y=4-14x2(-22x22),得2k2+m=4-14(2k)2,m=4-3k2.-22x022,-222k22,-2k0,-2k0)上,AB的中点为Q,满足O,E,Q三点共线.(1)求直线AB的斜率;(2)若直线AB与圆D相交于M,N两点,记OAB的面积为S1,OMN的面积为S2,求S=S1+S2的最大值.解(1)设A(x1,y

36、1),B(x2,y2),AB的中点Q(x0,y0).点A,B在椭圆C上,x122+y12=1,x222+y22=1,相减得(x1-x2)(x1+x2)2+(y1-y2)(y1+y2)=0.kAB=y1-y2x1-x2=-(x1+x2)2(y1+y2).x0=x1+x22,y0=y1+y22,kAB=-x02y0.E-305,3010,kOE=-12.O,E,Q三点共线,kOQ=kOE=-12=y0x0,kAB=-x02y0=1.(2)点E-305,3010在圆D上,r2=-3052+30102=32.圆D的方程为x2+y2=32.设直线AB的方程:y=x+m,由y=x+m,x22+y2=1,得

37、3x2+4mx+2m2-2=0.由0得m23.x1+x2=-4m3,x1x2=2m2-23,则|AB|=2(x1+x2)2-4x1x2=433-m2.设O到直线AB的距离为d,d=|m|2,|MN|=2r2-d2=232-m22.S=S1+S2=12|AB|d+12|MN|d=12433-m2|m|2+12232-m22|m|2=3+226|m|3-m2=3+226m2(3-m2)=3+226-m2-322+94,当m2=32b0)与y轴正半轴交于点M(0,3),离心率为12.直线l经过点P(t,0)(0ta)和点Q(0,1),且与椭圆E交于A,B两点(点A在第二象限).(1)求椭圆E的标准方

38、程;(2)若AP=PB,当0t233时,求的取值范围.解(1)由题意,e=ca=12且b=3,所以a=2.所以椭圆E的标准方程为x24+y23=1.(2)因为直线l经过点P(t,0)(0t0时,设A(x1,y1),B(x2,y2),则y1+y2=6t23t2+4,y1y2=3t2-123t2+4,因为AP=PB,所以(t-x1,-y1)=(x2-t,y2),所以y1=-y2,联立,消去y1,y2,整理得12(1-)2=4t2+12-4.当00且y21.所以1,3+52.命题角度4圆锥曲线的定值、定点问题高考真题体验对方向1.(2019北京18)已知抛物线C:x2=-2py经过点(2,-1).(

39、1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.(1)解由抛物线C:x2=-2py经过点(2,-1),得p=2.所以抛物线C的方程为x2=-4y,其准线方程为y=1.(2)证明抛物线C的焦点为F(0,-1).设直线l的方程为y=kx-1(k0).由y=kx-1,x2=-4y得x2+4kx-4=0.设M(x1,y1),N(x2,y2),则x1x2=-4.直线OM的方程为y=y1x1x.令y=-1,得点A的横坐标xA=-x1y1.同理得点B的横坐

40、标xB=-x2y2.设点D(0,n),则DA=-x1y1,-1-n,DB=-x2y2,-1-n,DADB=x1x2y1y2+(n+1)2=x1x2-x124-x224+(n+1)2=16x1x2+(n+1)2=-4+(n+1)2.令DADB=0,即-4+(n+1)2=0,得n=1或n=-3.综上,以AB为直径的圆经过y轴上的定点(0,1)和(0,-3).2.(2019全国21)已知曲线C:y=x22,D为直线y=-12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E0,52为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.(1)证

41、明设Dt,-12,A(x1,y1),则x12=2y1.由于y=x,所以切线DA的斜率为x1,故y1+12x1-t=x1.整理得2tx1-2y1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.故直线AB的方程为2tx-2y+1=0.所以直线AB过定点0,12.(2)解由(1)得直线AB的方程为y=tx+12.由y=tx+12,y=x22可得x2-2tx-1=0.于是x1+x2=2t,x1x2=-1,y1+y2=t(x1+x2)+1=2t2+1,|AB|=1+t2|x1-x2|=1+t2(x1+x2)2-4x1x2=2(t2+1).设d1,d2分别为点D,E到直线AB的距离,则d1

42、=t2+1,d2=2t2+1.因此,四边形ADBE的面积S=12|AB|(d1+d2)=(t2+3)t2+1.设M为线段AB的中点,则Mt,t2+12.由于EMAB,而EM=(t,t2-2),AB与向量(1,t)平行,所以t+(t2-2)t=0.解得t=0或t=1.当t=0时,S=3;当t=1时,S=42.因此,四边形ADBE的面积为3或42.3.(2017全国20)已知椭圆C:x2a2+y2b2=1(ab0),四点P1(1,1),P2(0,1),P3-1,32,P41,32中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率

43、的和为-1,证明:l过定点.(1)解由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由1a2+1b21a2+34b2知,C不经过点P1,所以点P2在C上.因此1b2=1,1a2+34b2=1,解得a2=4,b2=1.故C的方程为x24+y2=1.(2)证明设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知t0,且|t|0.设A(x1,y1),B(x2,y2),则x1+x2=-8km4k2+1,x1x2=4m2-44k2+1.而k1+k2=y1-1x1+y2-1x2=kx1+m-1x1+kx2+m-1x2=2kx1x2+(m-1)(x1+x

44、2)x1x2.由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)4m2-44k2+1+(m-1)-8km4k2+1=0.解得k=-m+12.当且仅当m-1时,0,于是l:y=-m+12x+m,即y+1=-m+12(x-2),所以l过定点(2,-1).典题演练提能刷高分1.(2019山东泰安高三第二轮复习质量检测)已知椭圆C:x2a2+y2b2=1(ab0)的右顶点为A,左焦点为F1,离心率e=22,过点A的直线与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1,若SABF1=3+322.(1)求椭圆C的标准方程;(2)过圆E:x2+y2=4上任意一

45、点P作圆E的切线l,l与椭圆交于M,N两点,以MN为直径的圆是否过定点?如过定点,求出该定点;若不过定点,请说明理由.解(1)e=ca=22,a=2c,b=c.设B(-c,y0),代入椭圆方程得|y0|=22b,SABF1=12|y0|F1A|=24b2(1+2).24b2(1+2)=3+322,b2=6,a2=12.椭圆C的标准方程为x212+y26=1.(2)当直线l的斜率不存在时,以MN为直径的圆的圆心为(2,0)或(-2,0),半径为2,|MN|=4,以MN为直径的圆的标准方程为(x+2)2+y2=4或(x-2)2+y2=4,因为两圆都过坐标原点,故以MN为直径的圆过坐标原点.当直线l

46、的斜率存在时,设其方程为y=kx+m,M(x1,y1),N(x2,y2),因为直线与圆E相切,所以圆心到直线l的距离为圆的半径2,即d=|m|1+k2=2,所以m2=4k2+4.由y=kx+m,x212+y26=1,化简得(2k2+1)x2+4kmx+2m2-12=0,x1+x2=-4km2k2+1,x1x2=2m2-122k2+1,OMON=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)(2m2-12)2k2+1-4m2k22k2+1+m2=3m2-12k2-122k2+1=3(4+4k2)-12k2-122k2+1=

47、0,故以MN为直径的圆过坐标原点,综上,以MN为直径的圆恒过坐标原点.2.(2019四川棠湖中学高三适应性考试)已知抛物线C:x2=4y,M为直线l:y=-1上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.(1)当M的坐标为(0,-1)时,求过M,A,B三点的圆的方程;(2)证明:以AB为直径的圆恒过点M.(1)解当M的坐标为(0,-1)时,设过M点的切线方程为y=kx-1,由x2=4y,y=kx-1,消去y得x2-4kx+4=0.令=(4k)2-44=0,解得k=1.代入方程,解得A(2,1),B(-2,1).设圆心点P的坐标为(0,a),由|PM|=|PB|,得a+1=

48、2,解得a=1.故过M,A,B三点的圆的方程为x2+(y-1)2=4.(2)证明设M(x0,-1),由已知得y=x24,y=12x,设切点分别为Ax1,x124,Bx2,x224,所以kMA=x12,kMB=x22,切线MA的方程为y-x124=x12(x-x1),即y=12x1x-14x12,切线MB的方程为y-x224=x22(x-x2),即y=12x2x-14x22.又因为切线MA过点M(x0,-1),所以得-1=12x0x1-14x12.又因为切线MB也过点M(x0,-1),所以得-1=12x0x2-14x22.所以x1,x2是方程-1=12x0x-14x2的两个实根.由韦达定理得x1

49、+x2=2x0,x1x2=-4.因为MA=x1-x0,x124+1,MB=x2-x0,x224+1,所以MAMB=(x1-x0)(x2-x0)+x124+1x224+1=x1x2-x0(x1+x2)+x02+x12x2216+14(x1+x2)2-2x1x2+1.将x1+x2=2x0,x1x2=-4代入,得MAMB=0.所以以AB为直径的圆恒过点M.3.(2019河南洛阳高三第三次统一考试)在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a0,b0)经过点A-62,2,且点F(0,-1)为其一个焦点.(1)求椭圆E的方程;(2)设椭圆E与y轴的两个交点为A1,A2,不在y轴上的动点P

50、在直线y=b2上运动,直线PA1,PA2分别与椭圆E交于点M,N.证明:直线MN通过一个定点,且FMN的周长为定值.解(1)根据题意可得32a2+2b2=1,b2-a2=1,可解得a=3,b=2,椭圆E的方程为y24+x23=1.(2)不妨设A1(0,2),A2(0,-2).P(x0,4)为直线y=4上一点(x00),M(x1,y1),N(x2,y2).直线PA1方程为y=2x0x+2,直线PA2方程为y=6x0x-2.点M(x1,y1),A1(0,2)的坐标满足方程组x23+y24=1,y=2x0x+2,可得x1=-6x03+x02,y1=2x02-63+x02.点N(x2,y2),A2(0

51、,-2)的坐标满足方程组x23+y24=1,y=6x0x-2,可得x2=18x027+x02,y2=-2x02+5427+x02,所以M-6x03+x02,2x02-63+x02,N18x027+x02,-2x02+5427+x02.直线MN的方程为y-2x02-63+x02=-x02-96x0x+6x03+x02,即y=-x02-96x0x+1.故直线MN恒过定点B(0,1).F(0,-1),B(0,1)是椭圆E的焦点,FMN周长=|FM|+|MB|+|BN|+|NF|=4b=8.4.已知长度为32的线段AB的两个端点A,B分别在x轴和y轴上运动,动点P满足BP=2PA,设动点P的轨迹为曲线

52、C.(1)求曲线C的方程;(2)过点(4,0)且斜率不为零的直线l与曲线C交于M,N两点,在x轴上是否存在定点T,使得直线MT与NT的斜率之积为常数.若存在,求出定点T的坐标以及此常数;若不存在,请说明理由.解(1)设P(x,y),A(m,0),B(0,n),由于BP=2PA,所以(x,y-n)=2(m-x,-y)=(2m-2x,-2y),即x=2m-2x,y-n=-2y,所以m=32x,n=3y,又|AB|=32,所以m2+n2=18,从而9x24+9y2=18.即曲线C的方程为x28+y22=1.(2)由题意设直线l的方程为:x=my+4,M(x1,y1),N(x2,y2),由x=my+4

53、,x28+y22=1,得(m2+4)y2+8my+8=0,所以y1+y2=-8mm2+4,y1y2=8m2+4,=64m2-32(m2+4)0.故x1+x2=m(y1+y2)+8=32m2+4,x1x2=m2y1y2+4m(y1+y2)+16=64-8m2m2+4,假设存在定点T(t,0),使得直线MT与NT的斜率之积为常数,则kMTkNT=y1y2(x1-t)(x2-t)=y1y2x1x2-t(x1+x2)+t2=8(t2-8)m2+4(t-4)2.当t2-8=0,且t-40时,kMTkNT为常数,解得t=22.显然当t=22时,常数为3+224;当t=-22时,常数为3-224,所以存在两

54、个定点T1(22,0),T2(-22,0),使得直线MT与NT的斜率之积为常数,当定点为T1(22,0)时,常数为3+224;当定点为T2(-22,0)时,常数为3-224.命题角度5圆锥曲线的探究、存在性问题高考真题体验对方向1.(2015全国20)在直角坐标系xOy中,曲线C:y=x24与直线l:y=kx+a(a0)交于M,N两点.(1)当k=0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有OPM=OPN?说明理由.解(1)由题设可得M(2a,a),N(-2a,a),或M(-2a,a),N(2a,a).又y=x2,故y=x24在x=2a处的导数值为a,C

55、在点(2a,a)处的切线方程为y-a=a(x-2a),即ax-y-a=0.y=x24在x=-2a处的导数值为-a,C在点(-2a,a)处的切线方程为y-a=-a(x+2a),即ax+y+a=0.故所求切线方程为ax-y-a=0和ax+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=y1-bx1+y2-bx2=2kx1x2+(a-b)(x1+x2)x1x2=k(a+b)a.当b=-a时,有k

56、1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故OPM=OPN,所以点P(0,-a)符合题意.2.(2015全国20)已知椭圆C:9x2+y2=m2(m0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点m3,m,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.(1)证明设直线l:y=kx+b(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0

57、,故xM=x1+x22=-kbk2+9,yM=kxM+b=9bk2+9.于是直线OM的斜率kOM=yMxM=-9k,即kOMk=-9.所以直线OM的斜率与l的斜率的乘积为定值.(2)解四边形OAPB能为平行四边形.因为直线l过点m3,m,所以l不过原点且与C有两个交点的充要条件是k0,k3.由(1)得OM的方程为y=-9kx.设点P的横坐标为xP.由y=-9kx,9x2+y2=m2得xP2=k2m29k2+81,即xP=km3k2+9.将点m3,m的坐标代入l的方程得b=m(3-k)3,因此xM=k(k-3)m3(k2+9).四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP

58、=2xM.于是km3k2+9=2k(k-3)m3(k2+9),解得k1=4-7,k2=4+7.因为ki0,ki3,i=1,2,所以当l的斜率为4-7或4+7时,四边形OAPB为平行四边形.3.(2014山东21)已知抛物线C:y2=2px(p0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,ADF为正三角形.(1)求C的方程;(2)若直线l1l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标;ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.解(1)由题意知Fp

59、2,0,设D(t,0)(t0),则FD的中点为p+2t4,0.因为|FA|=|FD|,由抛物线的定义知3+p2=t-p2,解得t=3+p或t=-3(舍去).由p+2t4=3,解得p=2.所以抛物线C的方程为y2=4x.(2)由(1)知F(1,0).设A(x0,y0)(x0y00),D(xD,0)(xD0),因为|FA|=|FD|,则|xD-1|=x0+1.由xD0得xD=x0+2,故D(x0+2,0).故直线AB的斜率kAB=-y02.因为直线l1和直线AB平行,设直线l1的方程为y=-y02x+b,代入抛物线方程得y2+8y0y-8by0=0,由题意=64y02+32by0=0,得b=-2y

60、0.设E(xE,yE),则yE=-4y0,xE=4y02.当y024时,kAE=yE-y0xE-x0=-4y0+y04y02-y024=4y0y02-4,可得直线AE的方程为y-y0=4y0y02-4(x-x0),由y02=4x0,整理可得y=4y0y02-4(x-1),直线AE恒过点F(1,0).当y02=4时,直线AE的方程为x=1,过点F(1,0).所以直线AE过定点F(1,0).由知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+1x0+1=x0+1x0+2.设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=x0-1y0.设B(x1,

61、y1),直线AB的方程为y-y0=-y02(x-x0),由于y00,可得x=-2y0y+2+x0,代入抛物线方程得y2+8y0y-8-4x0=0.所以y0+y1=-8y0,可求得y1=-y0-8y0,x1=4x0+x0+4.所以点B到直线AE的距离为d=4x0+x0+4+my0+8y0-11+m2=4(x0+1)x0=4x0+1x0.则ABE的面积S=124x0+1x0x0+1x0+216,当且仅当1x0=x0,即x0=1时等号成立.所以ABE的面积的最小值为16.典题演练提能刷高分1.已知椭圆C:x2a2+y2b2=1(ab0)的左顶点为A,右焦点为F2(2,0),点B(2,-2)在椭圆C上

62、.(1)求椭圆C的方程;(2)若直线y=kx(k0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N,在x轴上,是否存在点P,使得无论非零实数k怎样变化,总有MPN为直角?若存在,求出点P的坐标;若不存在,请说明理由.解(1)依题意,c=2.点B(2,-2)在C上,4a2+2b2=1.a2=b2+c2,a2=8,b2=4,椭圆方程为x28+y24=1.(2)假设存在这样的点P,设P(x0,0),E(x1,y1),则F(-x1,-y1),联立y=kx,x28+y24=1,消去y化简得(1+2k2)x2-8=0,解得x1=221+2k2,y1=22k1+2k2.A(-22,0),AE所

63、在直线方程为y=k1+1+2k2(x+22),M0,22k1+1+2k2,同理可得N0,22k1-1+2k2,PM=-x0,22k1+1+2k2,PN=-x0,22k1-1+2k2,由PMPN=0,得x02-4=0.x0=2或x0=-2.存在点P,使得无论非零实数k怎么变化,总有MPN为直角,点P坐标为(2,0)或(-2,0).2.(2019湖南长沙第一中学高三下学期高考模拟)已知圆x2+y2=9,A(1,1)为圆内一点,P,Q为圆上的动点,且PAQ=90,M是PQ的中点.(1)求点M的轨迹曲线C的方程;(2)设E92,12,D12,12,对曲线C上任意一点H,在直线ED上是否存在与点E不重合

64、的点F,使|HE|HF|是常数?若存在,求出点F的坐标,若不存在,说明理由.解(1)设点M(x,y),由PAQ=90,得|AM|=12|PQ|=|PM|=9-|OM|2,化简得x2+y2-x-y-72=0,即x-122+y-122=4.(2)点E92,12,D12,12,直线ED方程为y=12,假设存在点Ft,12t92,满足条件,设H(x,y),则有x-122+y-122=4,|HE|2=x-922+y-122=x-922+4-x-122=24-8x,|HF|2=(x-t)2+y-122=(x-t)2+4-x-122=(1-2t)x+t2+154,当|HE|HF|是常数时,|HF|HE|2=

65、(1-2t)x+t2+15424-8x也是常数,1-2tt2+154=-824,t=32或t=92(舍),t=32.存在F32,12满足条件.3.(2019北京丰台区高三年级第二学期综合练习二)已知椭圆E:x2a2+y2b2=1(ab0)的左、右顶点分别为A,B,长轴长为4,离心率为12.过右焦点F的直线l交椭圆E于C,D两点(均不与A,B重合),记直线AC,BD的斜率分别为k1,k2.(1)求椭圆E的方程;(2)是否存在常数,当直线l变动时,总有k1=k2成立?若存在,求出的值;若不存在,说明理由.解(1)由题知2a=4,ca=12,a2=b2+c2,解得a=2,b=3.所以椭圆E的方程为x

66、24+y23=1.(2)由(1)知A(-2,0),B(2,0),当直线l的斜率不存在时,直线l的方程为x=1.由x=1,x24+y23=1,解得x=1,y=32,或x=1,y=-32.得k1=12,k2=32或k1=-12,k2=-32,均有k1=13k2.猜测存在=13.当直线l的斜率存在时,设直线l的方程为y=k(x-1),C(x1,y1),D(x2,y2).由y=k(x-1),x24+y23=1,得(4k2+3)x2-8k2x+4k2-12=0.则x1+x2=8k24k2+3,x1x2=4k2-124k2+3.故k1-13k2=y1x1+2-y23(x2-2)=3(x2-2)y1-(x1

67、+2)y23(x1+2)(x2-2)=k2x1x2-5(x1+x2)+83(x1+2)(x2-2)=k8(k2-3)4k2+3-40k24k2+3+83(x1+2)(x2-2)=0.所以存在常数=13,使得k1=13k2恒成立.4.如图,已知椭圆的离心率为22,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(2+1).一双曲线的顶点是该椭圆的焦点,且双曲线的实轴长等于虚轴长,设P为该双曲线上异于顶点的任意一点,直线PF1和PF2与椭圆的交点分别为A,B和C,D,且点A,C在x轴的同一侧.(1)求椭圆和双曲线的标准方程;(2)是否存在题设中的点P,使得|AB|+|CD|=43

68、ABCD?若存在,求出点P的坐标;若不存在,请说明理由.解(1)由题意知,椭圆离心率e=ca=22,即a=2c,又2a+2c=4(2+1),所以a=22,c=2,所以b2=a2-c2=4,所以椭圆的标准方程为x28+y24=1.所以椭圆的焦点坐标为(2,0).又双曲线为等轴双曲线,且顶点是该圆的焦点,所以该双曲线的标准方程为x24-y24=1.(2)设P(x0,y0)(x02),则kPF1=y0x0+2,kPF2=y0x0-2,因为点P在双曲线x24-y24=1上,所以kPF1kPF2=1.设A(x1,y1),B(x2,y2),直线PF1的方程为y=k(x+2),所以直线PF2的方程为y=1k

69、(x-2),联立x28+y24=1,y=k(x+2),得(2k2+1)x2+8k2x+8k2-8=0,所以x1+x2=-8k22k2+1,x1x2=8k2-82k2+1,所以|AB|=1+k2(x1+x2)2-4x1x2=1+k2-8k22k2+12-48k2-82k2+1=42(1+k2)2k2+1.同理可得|CD|=421+1k221k2+1=42(k2+1)2+k2.由题知|AB|+|CD|=43|AB|CD|cos (=F1PF2),即cos =431|CD|+1|AB|=433(1+k2)42(1+k2)=22.因为PF1PF2=|PF1|PF2|cos ,即(-2-x0)(2-x0)+(-y0)(-y0)=(x0+2)2+y02(x0-2)2+y0222,又因为x02-y02=4,所以2(x02-4)=(x0+2)2+x02-4(x0-2)2+x02-422=2x02+4x02x02-4x022=2(x02-4)x02,所以x02=8,y02=4.即存在满足题意的点P,且点P的坐标为(22,2).

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3