ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:564KB ,
资源ID:108764      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-108764-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018一轮北师大版(理)数学教案:第7章 第5节 简单几何体的面积与体积 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018一轮北师大版(理)数学教案:第7章 第5节 简单几何体的面积与体积 WORD版含解析.doc

1、第五节简单几何体的面积与体积考纲传真了解球、棱柱、棱锥、台的表面积和体积的计算公式1圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧(r1r2)l2.柱、锥、台和球的表面积和体积表面积体积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R2VR31(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)锥体的体积等于底面面积与高之积()(2)球的体积之比等于半径比的平方()(3)台体的体积可转化为两个锥体的体积之差()(4)已知球O的

2、半径为R,其内接正方体的边长为a,则Ra.()答案(1)(2)(3)(4)2(教材改编)已知圆锥的表面积等于12 cm2,其侧面展开图是一个半圆,则底面圆的半径为()A1 cmB2 cmC3 cmD cmBS表r2rlr2r2r3r212,r24,r2(cm)3(2015全国卷)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图751,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的

3、米约有()图751A14斛B22斛C36斛D66斛B设米堆的底面半径为r尺,则r8,所以r,所以米堆的体积为Vr2525(立方尺)故堆放的米约有1.6222(斛)故选B.4(2016全国卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A12B.C8D4A设正方体棱长为a,则a38,所以a2.所以正方体的体对角线长为2,所以正方体外接球的半径为,所以球的表面积为4()212.5(2017郑州质检)某几何体的三视图如图752所示(单位:cm),则该几何体的体积是_cm3. 【导学号:57962340】图752由三视图可知该几何体是由棱长为2 cm的正方体与底面为边长为2 cm的正方形

4、、高为2 cm的四棱锥组成,VV正方体V四棱锥8 cm3 cm3 cm3.空间几何体的表面积(1)某三棱锥的三视图如图753所示,则该三棱锥的表面积是() 图753A2 B4 C22 D5(2)(2016全国卷)如图754,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径若该几何体的体积是,则它的表面积是()图754A17 B18 C20 D28 (1) C (2) D (1)由三视图作出三棱锥如图所示,在三棱锥ABCD中,AD平面BCD.BCD为等腰三角形,E为BC的中点,连接AE,DE,又ADBEEC1,DE2,所以BDCD,AE.则SACDSABD1,SABC2,SBCD2

5、.故S表SACDSABDSBCDSABC22.(2)由几何体的三视图可知,该几何体是一个球体去掉上半球的,得到的几何体如图设球的半径为R,则R3R3,解得R2.因此它的表面积为4R2R217.规律方法1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和(2)简单组合体:应搞清各构成部分,并注意重合部分的处理2若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解变式训练1(2016全国卷)如图755,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()图755A1836

6、B5418 C90 D81B由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(333633)25418.故选B.空间几何体的体积(1)在梯形ABCD中,ABC,ADBC,BC2AD2AB2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为() A.BC.D2(2)(2016天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图756所示(单位:m),则该四棱锥的体积为_m3.图756 (1)C(2)2(1)过点C作CE垂直AD所在直线于点E,梯形ABCD绕AD所在直线旋转一周而形成的旋转体是由以线段AB的长

7、为底面圆半径,线段BC为母线的圆柱挖去以线段CE的长为底面圆半径,ED为高的圆锥,如图所示由于V圆柱AB2BC1222,V圆锥CE2DE12(21),所以该几何体的体积VV圆柱V圆锥2.(2)由三视图知,四棱锥的高为3,底面平行四边形的一边长为2,对应高为1,所以其体积VSh2132.规律方法1.若所给定的几何体是柱体、锥体或台体,则可直接利用公式进行求解2若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解3若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解变式训练2(2017陕西质检(二)某几

8、何体的三视图如图757所示,则此几何体的体积是()【导学号:57962341】图757A28B32C36D40C由三视图得该几何体为一个底面半径为2,高为2的圆柱体和一个上底半径为2,下底半径为4,高为3的圆台,则其体积为2223(224224)36,故选C.多面体与球的切、接问题(2016全国卷)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球若ABBC,AB6,BC8,AA13,则V的最大值是()A4BC6DB由ABBC,AB6,BC8,得AC10,要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面ABC的内切圆的半径为r.则68(6810)r,则r2.此时2

9、r43,不合题意因此球与三棱柱的上、下底面相切时,球的半径R最大由2R3,即R.故球的最大体积VR3.迁移探究1若本例中的条件变为“直三棱柱ABCA1B1C1的6个顶点都在球O的球面上”,若AB3,AC4,ABAC,AA112,求球O的表面积解将直三棱柱补形为长方体ABECABEC,则球O是长方体ABECABEC的外接球,体对角线BC的长为球O的直径因此2R13,故S球4R2169.迁移探究2若本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积解如图,设球心为O,半径为r,则在RtAOF中,(4r)2()2r2,解得r,则球O的体积V球r3.规律方

10、法1.与球有关的组合体问题,一种是内切,一种是外接球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题2若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题变式训练3(2015全国卷)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点若三棱锥OABC体积的最大值为36,则球O的表面积为()A36B64C144D256 C如图,设球的半径为R,AOB90,SAOBR2.VOABCVCAOB,而AOB面积为定值,当点C到平面AOB

11、的距离最大时,VOABC最大,当C为与球的大圆面AOB垂直的直径的端点时,体积VOABC最大为R2R36,R6,球O的表面积为4R2462144.故选C.思想与方法1转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法2求体积的两种方法:割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决等积法:等积法包括等面积法和等体积法等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高易错与防范1求组合体的表面积时,要注意各几何体重叠部分的处理,防止重复计算2底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3