1、高考资源网() 您身边的高考专家课后素养落实(四十二)离散型随机变量的方差(建议用时:40分钟)一、选择题1若X是一个随机变量,则E(XEX)的值为()A无法求B0CEXD2EXBEX是一个常数,E(XEX)EXEX02已知随机变量X的分布列是X123P0.40.20.4则DX等于()A0B0.8C2D1BEX10.420.230.42,DX0.4(12)20.2(22)20.4(32)20.83若随机变量X的分布列为X01Ppq其中p(0,1),则()AEXp,DXp3BEXp,DXp2CEXq,DXq2DEX1p,DXpp2D由于pq1,所以q1p从而EX0p1qq1p,DX0(1p)2p
2、1(1p)2q(1p)2pp2(1p)pp24甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为、,和的分布列如下:012P012P甲、乙两名工人的技术水平较好的为()A一样好B甲C乙D无法比较C工人甲生产出次品数的期望和方差分别为:E0120.7,D(00.7)2(10.7)2(20.7)20.81工人乙生产出次品数的期望和方差分别为:E0120.7,D(00.7)2(10.7)2(20.7)20.61由EE知,两人出次品的平均数相同,技术水平相当,但DD,可见乙的技术比较稳定5若随机变量的分布列为P( m),P(n)a,若E2,则D的最小值等于()A0B2C4D无法计
3、算A在分布列中概率的和为1,则a1,aE2,2m62nD(m2)2(n2)2(n2)2(62n2)22n28n82(n2)2n2时,D取最小值0二、填空题6随机变量的分布列如下:101Pabc其中ac2b,若E,则D_由题意得2bac,abc1,ca,以上三式联立解得a,b,c,故D7若X的分布列为X1234P则D等于_EX1234,DX ,DDX8袋中有大小相同的三个球,编号分别为1,2,3,从袋中每次取出一个球,若取到球的编号为奇数,则取球停止,用X表示所有被取到的球的编号之和,则X的方差为_X的分布列为X135P则E135,D三、解答题9已知随机变量X的分布列为X0123P0.20.3a
4、0.2求EX,DX,D(2X3)解0.20.3a0.21,a0.3EX00.210.320.330.21.5DX(01.5)20.2(11.5)20.3(21.5)20.3(31.5)20.21.05D(2X3)4DX4.210海关大楼顶端镶有A,B两面大钟,它们的日走时误差分别为X1,X2(单位:s),其分布列为:X121012P0.050.050.80.050.05X221012P0.10.20.40.20.1根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量解EX10,EX20,EX1EX2又DX1(20)20.05(10)20.05020.8(10)20.05(20)20.050
5、.5,DX2(20)20.1(10)20.2020.4(10)20.2(20)20.11.2,DX1DX2大钟A的质量较好11已知随机变量的分布列为123P0.5xy若E,则D()ABCD1A由分布列性质,得xy0.5又E,得2x3y,可得D12编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X,则()AEX1DX1BEX2 DX1CEX1DX2DEX2DX2AX的所有可能取值为0,1,3,X0表示三位同学全坐错了,有2种情况,所以P(X0);X1表示三位同学只有1位同学坐对了,所以P(X1);X3表示三位学生全坐对了,只有1种情
6、况,所以P(X3)所以X的分布列为X013P所以EX0131,DX(01)2(11)2(31)2113(多选题)已知X的分布列如下表所示:X101P则下列式子中,正确的有()AEXBDXCE(2X)DD(2X)ABC由均值与方差的定义知,EX(1)01,DX,所以E(2X)2EX,D(2X)4DX故ABC正确14(一题两空)已知A1,A2为两所高校举行的自主招生考试,某同学参加每所高校的考试获得通过的概率均为,该同学一旦通过某所高校的考试,就不再参加其他高校的考试,设该同学通过高校的个数为随机变量X,则EX_,DX_因为X的取值为0,1,P(X0),P(X1)1,所以EX01,DX15从甲地到
7、乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,(1)记X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率解(1)随机变量的所有可能取值为0,1,2,3P(X0),P(X1),P(X2),P(X3)所以,随机变量X的分布列为X0123P随机变量X的数学期望E(X)0123(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(YZ1)P(Y0,Z1)P(Y1,Z0)P(Y0)P(Z1)P(Y1)P(Z0)所以,这2辆车共遇到1个红灯的概率为- 7 - 版权所有高考资源网