1、第二章2.5第2课时 A级基础巩固一、选择题1等比数列an中,a29,a5243,则an的前4项和为(B)A81B120C168 D192解析q327,q3,a13,S4120.2数列an的通项公式anncos,其前n项和为Sn,则S2 016等于(A)A1 008 B2 016C504 D0解析函数ycos的周期T4,且第一个周期四项依次为0,1,0,1.可分四组求和:a1a5a2 0130,a2a6a2 014262 0145041 008,a3a7a2 0150,a4a8a2 016482 0165041 010.S2 01605041 00805041 010504(1 0101 00
2、8)1 008,故选A3已知数列an:,设bn,那么数列bn前n项的和为(A)A4(1) B4()C1 D解析an,bn4()Sn4(1)()()()4(1)4(20182019学年度山东日照青山中学高二月考)已知数列an的前n项和Snn24n2,则|a1|a2|a10|等于(A)A66B65C61D56解析当n2时,anSnSn1n24n2(n1)24(n1)2n24n2(n26n7)n24n2n26n72n5,当n1时,a1S11不满足上式,an.|a1|a2|a10|1113515226466.二、填空题5数列,前n项的和为_4_.解析设SnSn得(1)Sn2.Sn4.6(2015广东理
3、,10)在等差数列an中,若a3a4a5a6a725,则a2a8_10_.解析因为an是等差数列,所以a3a7a4a6a2a82a5,a3a4a5a6a75a525 即a55,a2a82a510.三、解答题7(2015山东理,18)设数列an的前n项和为Sn,已知2Sn3n3.(1)求an的通项公式;(2)若数列bn满足anbnlog3an,求bn的前n项和Tn.解析(1)因为2Sn3n3,所以2a133,故a13,当n2时,2Sn13n13,此时2an2Sn2Sn13n3n123n1,即an3n1,所以an.(2)因为anbnlog3an,所以b1,当n2时,bn31nlog33n1(n1)
4、31n.所以T1b1;当n2时,Tnb1b2b3bn(131232(n1)31n),所以3Tn1130231(n1)32n两式相减,得2Tn(30313232n)(n1)31n(n1)31n.8(20182019学年度山东菏泽一中高二月考)已知数列an为等差数列,且a15,a29,数列bn的前n项和Snbn.(1)求数列an和bn的通项公式(2)设cnan|bn|,求数列cn的前n项的和Tn.解析(1)公差da2a1954,ana1(n1)d54(n1)4n1.(2)Snbn,Sn1bn1(n2),两式相减,得bnbnbn1,bnbn1,2(n2)又b1S1b1,b11,数列bn是首项为1,公
5、比为2的等比数列,bn(2)an|bn|(4n1)|(2)n1|(4n1)2n1.Tn51921322(4n1)2n12Tn52922(4n3)2n1(4n1)2n得Tn54(2222n1)(4n1)2n54(4n1)2n58(2n11)(4n1)2n52n28(4n1)2n2n2(4n1)2n32n(44n1)32n(34n)3,Tn(4n3)2n3.B级素养提升一、选择题1已知等差数列an和bn的前n项和分别为Sn,Tn,且,则(A)A BC6 D7解析,又,.2(20182019学年度山东日照青山中学高二月考)已知数列an的通项公式是an,其前n项和Sn,则项数n等于(D)A13B10C
6、9D6解析an1,Sn(1)(1)(1)(1)n()nn1,令n15,n6.二、填空题3等比数列an的前n项和Sn3n1a(a为常数),bn,则数列bn的前n项和为_(1)_.解析Sn为等比数列an的前n项和,且Sn3(3n)1,a3,Sn3n13,当n2时,anSnSn1(3n13)(3n3)23n,又a1S16符合式,an23n,bn()n,bn的前n项和为Tn(1)4求和1(13)(1332)(133233)(133n1)_(3n1)_.解析a11,a213,a31332,an13323n1(3n1),原式(311)(321)(3n1)(3323n)n(3n1).三、解答题5(2015全
7、国理,17)Sn为数列an的前n项和已知an0,a2an4Sn3.(1)求an的通项公式;(2)设bn,求数列bn的前n项和解析(1)当n1时,a2a14S134a13,因为an0,所以a13,当n2时,a2ana2an14Sn34Sn134an,即(anan1)(anan1)2(anan1),因为an0,所以anan12,所以数列an是首项为3,公差为2的等差数列,所以an2n1.(2)由(1)知,bn(),所以数列bn前n项和为b1b2bn()()().6已知数列an和bn中,数列an的前n项和为Sn.若点(n,Sn)在函数yx24x的图象上,点(n,bn)在函数y2x的图象上(1)求数列
8、an的通项公式;(2)求数列anbn的前n项和Tn.解析(1)由已知得Snn24n,当n2时,anSnSn12n5,又当n1时,a1S13,符合上式an2n5.(2)由已知得bn2n,anbn(2n5)2n.Tn321122(1)23(2n5)2n,2Tn322123(2n7)2n(2n5)2n1.两式相减得Tn6(23242n1)(2n5)2n1(2n5)2n16(72n)2n114.C级能力拔高1等差数列an中,a24,a4a715.(1)求数列an的通项公式;(2)设bn2an2n,求b1b2b3b10的值解析(1)设等差数列an的公差为d.由已知得,解得.所以ana1(n1)dn2.(2)由(1)可得bn2nn.所以b1b2b3b10(21)(222)(233)(21010)(22223210)(12310)(2112)55211532 101.2已知数列an是递增的等比数列,且a1a49,a2a38.(1)求数列an的通项公式;(2)设Sn为数列an的前n项和,bn,求数列bn的前n项和Tn.解析(1)an是递增的等比数列,且a1a49,a2a38,.q38,q2.ana1qn12n1.(2)由(1)可知Sn2n1,bn.Tn(1)()()()1.