1、精英同步卷:第九章章末综合1、现有60件产品,编号从1到60,若用系统抽样方法从中抽取6件检验,则所抽到的个体编号可能是( )A.5,10,15,20,25,30B.2,14,26,28,42,56C.5,8,31,36,48,54D.3,13,23,33,43 ,532、关于简单随机抽样,有下列说法正确的是( )它要求被抽取样本的总体的个数有限;它是从总体中逐个地进行抽取;它是一种不放回抽样;它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.B.C.D.3、中央电视台动画城
2、节目为了对本周的热心小观众给予奖励,要从已确定编号的10000名小观众中抽出10名幸运小观众.现采用系统抽样方法抽取,其抽样距为( )A.10B.100C.1000D.100004、某支股票近10个交易日的价格如下:交易日12345678910股价/元4.324.184.284.344.304.454.514.484.524.55下列几种统计图中,表示上面的数据较合适的是( )A.条形统计图B.扇形统计图C.折线统计图D.茎叶图5、数据8,51,33,39,38,23,26,28,13,16,14的茎叶图( )A.B.C.D.6、某学校从高二甲、乙两个班中各选了名同学参加数学竞赛,他们取得的成
3、绩的茎叶图如图所示,其中甲班学生成绩的众数是,乙班学生成绩的平均数为,则的值为( )A.6B.7C.8D.97、设有两组数据, 与, ,它们的平均数分别是和,则新的一组数据, 的平均数是( )A. B. C. D. 8、如图是2014年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( )A.85,84B.84,85C.86,84D.84,849、从甲、乙两种棉花中各抽测了根棉花的纤维长度(单位: )组成一个样本,得到茎叶图如图:甲、乙两种棉花纤维的平均长度分别用表示,标准差分别用表示,则( )A. B. C. D.
4、10、已知某个数的平均数为方差为现加入一个新数据此时这个数的平均数为,方差为,则( )A. ,B. ,C. ,D. ,11、已知一组数据的平均数为,则该组数据的方差为_12、从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知_.若要从身高在120,130),130,140),140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在140,150内的学生中选取的人数应为_.13、某校从参加高三年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段40,50),50,60),90,100后得到如图所示的频
5、率分布直方图,请你根据频率分布直方图中的信息,估计出本次考试数学成绩的平均分为_。14、在对两个变量,进行线性回归分析时有下列步骤:对所求出的线性回归方程作出解释;收集数据;求线性回归方程;求相关系数;根据所搜集的数据绘制散点图.如果根据可靠性要求能够作出变量,具有线性相关结论,则操作顺序应为_.15、某单位为了了解用电量度与气温之间的关系,随机统计了某四天的用电量与当天气温,列表如下:气温用电量(度)由表中数据得到回归直线方程.据此预测当气温为时,用电量为_(单位:度)16、某农科所对冬季昼夜温差大小与某反季节大豆新品种种子发芽数之间的关系进行分析研究,他们分别记录了12月1日至12月5日每
6、天昼夜温差大小与实验室每天每100颗种子中的发芽数,得到如下数据:该农科所确定的研究方案是:先从这5组数据中随机选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验。(1)求随机选取的2组数据恰好是不相邻的2天数据的概率;(2)若选取的是12月l日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y关于x的线性回归方程(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠.参考公式:17、从某居民区随机抽取10个家庭,获得第i个家庭的月收入(单位:千元)与月储蓄(单位:千元
7、)的数据资料,经算得:,.(1)求家庭的月储蓄y对月收入x的线性回归方程;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 答案以及解析1答案及解析:答案:D解析:根据系统抽样方法,按照一定的规则抽取样本。通常是将加上间隔得到第二个个体编号,再加得到第个个体编号,依次进行下去,直到获得整个样本。本题分组,每组件产品,所以,所抽到的个体编号可能是,选D。 2答案及解析:答案:D解析:由随机抽样的特征可知. 3答案及解析:答案:C解析:系统抽样的特点是从比较多比较均衡的个体中抽取一定的样本,并且抽取的样本具有一定的规律性,先将整体分成若干个小组
8、,在每个小组中抽取一个.现要从已确定编号的一万名小观众中抽出十名幸运小观众,其组容量为.故选C. 4答案及解析:答案:C解析: 5答案及解析:答案:C解析:茎叶图C中的数据为8,51,33,39,38,23,26,28,1316,14,与题目中对应. 6答案及解析:答案:D解析:由众数的定义知,由乙班学生成绩的平均数得,解得,故. 7答案及解析:答案:B解析:因为设有两组数据, 与, ,它们的平均数分别是和,则新的一组数据, 的平均数是为,选B 8答案及解析:答案:A解析:根据茎叶图可知七位评委的最高分数是93,和最低分数是79,去掉这两个分数还剩下84,84,86,84,87五个分数,所以这
9、五个数的平均数为,这五个数的众数为84,故选A. 9答案及解析:答案:C解析: 10答案及解析:答案:A解析:由题意,某7个数的平均数为4,方差为2,先加入一个新数据4此时这8个数的平均数为方差为 11答案及解析:答案:4解析: 12答案及解析:答案:0.030; 3解析:直方图中各个矩形的面积之和为,解得.由直方图可知三个区域内的学生总数为人.其中身高在内的学生人数为人,所以身高在范围内抽取的学生人数为人. 13答案及解析:答案:71解析:由题中的频率分布直方图得每一组的频率依次为,所以本次考试数学成绩的平均分为。 14答案及解析:答案:解析: 15答案及解析:答案:68解析:,回归直线方程过样本点的中心, ,得,回归直线方程,当时,用电量. 16答案及解析:答案:解:(1)记选取到不相邻两组数据为事件A.因为从5组数据中随机选取2组数据共有10种情况,每种情况是等可能出现的,其中选取到相邻两组数据的情况有4种,所以故选取的2组数据恰好是不相邻的2天数据的概率是(2)所以所以y关于x的线性回归方程为(3)当时, 当时,所以该研究所得到的线性回归方程是可靠的。解析: 17答案及解析:答案:(1)由题意知,又,故所求回归方程为.(2)由于变量y的值随x的值增加而增加,故x与y之间是正相关.(3)将代入回归方程可以预测该家庭的月储蓄为(千元).解析: