1、课时知能训练一、选择题1下列关于星星的图案中星星个数构成一个数列,该数列的一个通项公式是()图512Aann2n1BanCan Dan2(2012梅州质检)在数列an中,a11,anan1an1(1)n(n2,nN*),则的值是()A. B.C. D.3已知数列an的前n项和为Sn,且Sn2(an1),则a2等于()A4 B2C1 D24已知数列an满足a11,an1an2n,则a10()A1 024 B1 023C2 048 D2 0475(2011江西高考)已知数列an的前n项和Sn满足:SnSmSnm,且a11,那么a10()A1 B9C10 D55二、填空题6(2012湛江调研)已知a
2、12,an1an2n1(nN*),则an_.7已知数列an的前n项和Snn29n,第k项满足5ak8,则k的值为_8数列an中,a11,对于所有的n2,nN*,都有a1a2a3ann2,则a3a5_.三、解答题9已知数列an的前n项和为Sn,若S11,S22,且Sn13Sn2Sn10(nN*且n2),求该数列的通项公式10(2012邯郸模拟)已知数列an满足前n项和Snn21,数列bn满足bn,且前n项和为Tn,设cnT2n1Tn.(1)求数列bn的通项公式;(2)判断数列cn的增减性11已知数列an满足a11,a213,an22an1an2n6.(1)设bnan1an,求数列bn的通项公式;
3、(2)求n为何值时an最小答案及解析1【解析】观察所给图案知,an123n.【答案】C2【解析】当n2时,a2a1a1(1)2,a22,当n3时,a3a2a2(1)3,a3,当n4时,a4a3a3(1)4,a43,当n5时,a5a4a4(1)5,a5,.【答案】C3【解析】Sn2(an1),S1a12(a11),解得a12,又S2a1a22(a21),解得a2a124.【答案】A4【解析】an1an2n,anan12n1(n2),a10(a10a9)(a9a8)(a2a1)a129282121011 023.【答案】B5【解析】SnSmSnm,令n9,m1,即得S9S1S10,S1S10S9a
4、101,a101.【答案】A6【解析】an1an2n1,anan12(n1)12n1,an(anan1)(an1an2)(a2a1)a1(2n1)(2n3)322n21.【答案】n217【解析】当n2时,anSnSn12n10;当n1时,a18适合上式an2n10.5ak8,52k108,k9,又kN*,k8.【答案】88【解析】由题意知:a1a2a3an1(n1)2,an()2(n2),a3a5()2()2.【答案】9【解】由S11得a11,又由 S22可知a21.Sn13Sn2Sn10(nN*且n2),Sn1Sn2Sn2Sn10(nN*且n2),即(Sn1Sn)2(SnSn1)0(nN*且
5、n2)an12an(nN*且n2)故数列an从第2项起是以2为公比的等比数列数列an的通项公式为an.10【解】(1)a12,anSnSn12n1(n2)bn.(2)cnbn1bn2b2n1,cn1cn0,cn是递减数列11【解】(1)由an22an1an2n6得,(an2an1)(an1an)2n6,bn1bn2n6.当n2时,bnbn12(n1)6,bn1bn22(n2)6,b3b2226,b2b1216,累加得bnb12(12n1)6(n1)n(n1)6n6n27n6.bnn27n8(n2),n1时,b1a2a114也适合此式故bnn27n8.(2)由bn(n8)(n1),得an1an(n8)(n1),当n8时,an1an,当n8时,a9a8,当n8时,an1an.故当n8或n9时an的值最小