收藏 分享(赏)

2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc

上传人:高**** 文档编号:1075069 上传时间:2024-06-04 格式:DOC 页数:10 大小:122.50KB
下载 相关 举报
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第1页
第1页 / 共10页
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第2页
第2页 / 共10页
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第3页
第3页 / 共10页
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第4页
第4页 / 共10页
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第5页
第5页 / 共10页
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第6页
第6页 / 共10页
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第7页
第7页 / 共10页
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第8页
第8页 / 共10页
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第9页
第9页 / 共10页
2020版新设计一轮复习数学(文)江苏专版板块命题点专练(八) 数列 WORD版含解析.doc_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、板块命题点专练(八) 数列命题点一数列的概念及表示1.(2016上海高考)无穷数列an由k个不同的数组成,Sn为an的前n项和若对任意nN*,Sn2,3,则k的最大值为_解析:由Sn2,3,得a1S12,3将数列写出至最多项,其中有相同项的情况舍去,共有如下几种情况:a12,a20,a31,a41;a12,a21,a30,a41;a12,a21,a31,a40;a13,a20,a31,a41;a13,a21,a30,a41;a13,a21,a31,a40.最多项均只能写到第4项,即kmax4.答案:42(2014全国卷)数列 an满足 an1,a82,则a1 _.解析:将a82代入an1,可求

2、得a7;再将a7代入an1,可求得a61;再将a61代入an1,可求得a52;由此可以推出数列an是一个周期数列,且周期为3,所以a1a7.答案:命题点二等差数列与等比数列1(2018北京高考)设an是等差数列,且a13,a2a536,则an的通项公式为_解析:法一:设数列an的公差为d.a2a536,(a1d)(a14d)2a15d36.a13,d6,an6n3.法二:设数列an的公差为d,a2a5a1a636,a13,a633,d6,an6n3.答案:an6n32(2017江苏高考)等比数列an的各项均为实数,其前n项和为Sn.已知S3,S6,则a8_.解析:设等比数列an的公比为q,则由

3、S62S3,得q1,则解得则a8a1q72732.答案:323(2018全国卷)记Sn为数列an的前n项和若Sn2an1,则S6_.解析:Sn2an1,当n2时,Sn12an11,anSnSn12an2an1,即an2an1.当n1时,由a1S12a11,得a11.数列an是首项a1为1,公比q为2的等比数列,Sn12n,S612663.答案:634(2016江苏高考)已知an是等差数列,Sn是其前n项和若a1a3,S510,则a9的值是_解析:法一:设等差数列an的公差为d,由S510,知S55a1d10,得a12d2,即a122d.所以a2a1d2d,代入a1a3,化简得d26d90,所以

4、d3,a14.故a9a18d42420.法二:设等差数列an的公差为d,由S510,知5a310,所以a32.所以由a1a32a2,得a12a22,代入a1a3,化简得a2a210,所以a21.公差da3a2213,故a9a36d21820.答案:205(2018北京高考)设an是等差数列,且a1ln 2,a2a35ln 2.(1)求an的通项公式;(2)求eee.解:(1)设an的公差为d.因为a2a35ln 2,所以2a13d5ln 2.又a1ln 2,所以dln 2.所以ana1(n1)dnln 2.(2)因为eeln 22,eeln 22,所以数列ean是首项为2,公比为2的等比数列,

5、所以eee2n12.6(2017江苏高考)对于给定的正整数k,若数列an满足:ankank1an1 an1ank1ank2kan,对任意正整数n(nk)总成立,则称数列an是“P(k)数列”(1)证明:等差数列an是“P(3)数列”;(2)若数列an既是“P(2)数列”,又是“P(3)数列”,证明:an是等差数列证明:(1)因为an是等差数列,设其公差为d,则ana1(n1)d,从而,当n4时,ankanka1(nk1)da1(nk1)d2a12(n1)d2an,k1,2,3,所以an3an2an1an1an2an36an,因此等差数列an是“P(3)数列”(2)数列an既是“P(2)数列”,

6、又是“P(3)数列”,因此,当n3时,an2an1an1an24an, 当n4时,an3an2an1an1an2an36an.由知,an3an24an1(anan1), an2an34an1(an1an) 将代入,得an1an12an,其中n4,所以a3,a4,a5,是等差数列,设其公差为d.在中,取n4,则a2a3a5a64a4,所以a2a3d,在中,取n3,则a1a2a4a54a3,所以a1a32d,所以数列an是等差数列7(2017全国卷)记Sn为等比数列an的前n项和已知S22,S36.(1)求an的通项公式;(2)求Sn,并判断Sn1,Sn,Sn2是否成等差数列解:(1)设an的公比

7、为q.由题设可得解得故an的通项公式为an(2)n.(2)由(1)可得Sn(1)n.由于Sn2Sn1(1)n22Sn,故Sn1,Sn,Sn2成等差数列8(2015江苏高考)设a1,a2,a3,a4是各项为正数且公差为d(d0)的等差数列(1)证明:2a1,2a2,2a3,2a4依次构成等比数列(2)是否存在a1,d,使得a1,a,a,a依次构成等比数列?并说明理由(3)是否存在a1,d及正整数n,k使得a,a,a,a依次构成等比数列?并说明理由解:(1)证明:因为2an1an2d(n1,2,3)是同一个常数,所以2a1,2a2,2a3,2a4依次构成等比数列(2)不存在,理由如下:令a1da,

8、则a1,a2,a3,a4分别为ad,a,ad,a2d(ad,a2d,d0)假设存在a1,d,使得a1,a,a,a依次构成等比数列,则a4(ad)(ad)3,且(ad)6a2(a2d)4.令t,则1(1t)(1t)3,且(1t)6(12t)4,化简得t32t220(*),且t2t1.将t2t1代入(*)式,得t(t1)2(t1)2t23tt13t4t10,则t.显然t不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a,a,a依次构成等比数列(3)不存在,理由如下:假设存在a1,d及正整数n,k,使得a,a,a,a依次构成等比数列,则a(a12d)n2k(a1d)2(nk),

9、且(a1d)nk(a13d)n3k(a12d)2(n2k),分别在两个等式的两边同除以a及a,并令t,则(12t)n2k(1t)2(nk),且(1t)nk(13t)n3k(12t)2(n2k)将上述两个等式两边取对数,得(n2k)ln(12t)2(nk)ln(1t),且(nk)ln(1t)(n3k)ln(13t)2(n2k)ln(12t)化简得2kln(12t)ln(1t)n2ln(1t)ln(12t),且3kln(13t)ln(1t)n3ln(1t)ln(13t)再将这两式相除,化简得ln(13t)ln(12t)3ln(12t)ln(1t)4ln(13t)ln(1t)(*)令g(t)4ln(

10、13t)ln(1t)ln(13t)ln(12t)3ln(12t)ln(1t),则g(t).令(t)(13t)2ln(13t)3(12t)2ln(12t)3(1t)2ln(1t),则(t)6(13t)ln(13t)2(12t)ln(12t)(1t)ln(1t)令1(t)(t),则1(t)63ln(13t)4ln(12t)ln(1t)令2(t)1(t),则2(t)0.由g(0)(0)1(0)2(0)0,2(t)0,知2(t),1(t),(t),g(t)在和(0,)上均单调故g(t)只有唯一零点t0,即方程(*)只有唯一解t0,故假设不成立所以不存在a1,d及正整数n,k,使得a,a,a,a依次构成

11、等比数列命题点三数列求和1.(2018江苏高考)已知集合Ax|x2n1,nN*,Bx|x2n,nN*将AB的所有元素从小到大依次排列构成一个数列an记Sn为数列an的前n项和,则使得Sn12an1成立的n的最小值为_解析:所有的正奇数和2n(nN*)按照从小到大的顺序排列构成an,在数列an中,25前面有16个正奇数,即a2125,a3826.当n1时,S1112a224,不符合题意;当n2时,S2312a336,不符合题意;当n3时,S3612a448,不符合题意;当n4时,S41012a560,不符合题意;当n26时,S264416250312a27516,不符合题意;当n27时,S274

12、846254612a28540,符合题意故使得Sn12an1成立的n的最小值为27.答案:272(2017全国卷)等差数列an的前n项和为Sn,a33,S410,则_.解析:设等差数列an的首项为a1,公差为d,依题意有解得所以Sn,2,因此2.答案:3(2018全国卷)等比数列an中,a11,a54a3.(1)求an的通项公式;(2)记Sn为an的前n项和若Sm63,求m.解:(1)设an的公比为q,由题设得anqn1.由已知得q44q2,解得q0(舍去)或q2或q2.故an(2)n1或an2n1.(2)若an(2)n1,则Sn.由Sm63,得(2)m188,此方程没有正整数解若an2n1,

13、则Sn2n1.由Sm63,得2m64,解得m6.综上,m6.4(2018浙江高考)已知等比数列an的公比q1,且a3a4a528,a42是a3,a5的等差中项数列bn满足b11,数列(bn1bn)an的前n项和为2n2n.(1)求q的值;(2)求数列bn的通项公式解:(1)由a42是a3,a5的等差中项,得a3a52a44,所以a3a4a53a4428,解得a48.由a3a520,得820,解得q2或q.因为q1,所以q2.(2)设cn(bn1bn)an,数列cn的前n项和为Sn.由cn解得cn4n1.由(1)可得an2n1,所以bn1bn(4n1)n1,故bnbn1(4n5)n2,n2,bn

14、b1(bnbn1)(bn1bn2)(b3b2)(b2b1)(4n5)n2(4n9)n373.设Tn37112(4n5)n2,n2,则Tn372(4n9)n2(4n5)n1,两式相减,得Tn34424n2(4n5)n1,所以Tn14(4n3)n2,n2.又b11,所以bn15(4n3)n2.命题点四数列的综合应用1.(2016江苏高考)记U1,2,100,对数列an(nN*)和U的子集T,若T,定义ST0;若Tt1,t2,tk,定义STat1at2atk.例如:T1,3,66时,STa1a3a66.现设an(nN*)是公比为3的等比数列,且当T2,4时,ST30.(1)求数列an的通项公式;(2

15、)对任意正整数k(1k100),若T1,2,k,求证:STak1;(3)设CU,DU,SCSD,求证:SCSCD2SD.解:(1)由已知得ana13n1,nN*.于是当T2,4时,STa2a43a127a130a1.又ST30,故30a130,即a11.所以数列an的通项公式为an3n1,nN*.(2)证明:因为T1,2,k,an3n10,nN*,所以STa1a2ak133k1(3k1)3k.因此,STak1.(3)证明:下面分三种情况证明若D是C的子集,则SCSCDSCSDSDSD2SD.若C是D的子集,则SCSCDSCSC2SC2SD.若D不是C的子集,且C不是D的子集令ECUD,FDUC

16、,则E,F,EF.于是SCSESCD,SDSFSCD,进而由SCSD得SESF.设k为E中的最大数,l为F中的最大数,则k1,l1,kl.由(2)知,SEak1.于是3l1alSFSEak13k,所以l1k,即lk.又kl,故lk1.从而SFa1a2al133l1,故SE2SF1,所以SCSCD2(SDSCD)1,即SCSCD2SD1.综合得,SCSCD2SD.2(2018天津高考)设an是等比数列,公比大于0,其前n项和为Sn(nN*),bn是等差数列已知a11,a3a22,a4b3b5,a5b42b6.(1)求an和bn的通项公式;(2)设数列Sn的前n项和为Tn(nN*),求Tn;证明2

17、(nN*)解:(1)设等比数列an的公比为q.由a11,a3a22,可得q2q20.由q0,可得q2,故an2n1.设等差数列bn的公差为d.由a4b3b5,可得b13d4.由a5b42b6,可得3b113d16.联立解得b11,d1,故bnn.所以数列an的通项公式为an2n1,数列bn的通项公式为bnn.(2)由(1),有Sn2n1,所以Tn(2k1)knn2n1n2.证明:因为,所以2.3(2018江苏高考)设an是首项为a1,公差为d的等差数列,bn是首项为b1,公比为q的等比数列(1)设a10,b11,q2,若|anbn|b1对n1,2,3,4均成立,求d的取值范围;(2)若a1b1

18、0,mN*,q(1,证明:存在dR,使得|anbn|b1对n2,3,m1均成立,并求d的取值范围(用b1,m,q表示)解:(1)由条件知an(n1)d,bn2n1.因为|anbn|b1对n1,2,3,4均成立,即|(n1)d2n1|1对n1,2,3,4均成立,所以11,1d3,32d5,73d9,解得d.所以d的取值范围为.(2)由条件知anb1(n1)d,bnb1qn1.若存在d,使得|anbn|b1(n2,3,m1)成立,即|b1(n1)db1qn1|b1(n2,3,m1),即当n2,3,m1时,d满足b1db1.因为q(1,则1qn1qm2,从而b10,b10,对n2,3,m1均成立因此,取d0时,|anbn|b1对n2,3,m1均成立下面讨论数列的最大值和数列的最小值(n2,3,m1)当2nm时,.当1q2时,有qnqm2,从而n(qnqn1)qn20.因此,当2nm1时,数列单调递增,故数列的最大值为.设f(x)2x(1x),当x0时,f(x)(ln 21xln 2)2x0,所以f(x)单调递减,从而f(x)f(0)1.当2nm时,2f1,因此,当2nm1时,数列单调递减,故数列的最小值为.因此d的取值范围为.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3