1、由 扫描全能王 扫描创建湖南师大附中加L7 2018 学年度高一 第一 学期第一 次阶段性检测数学参考答案选择题 本大题共 12 小题 每小题 5 分,共 60 分回 币昨币昨 睏团园I回国回国團1 2B【解析】由题 意知,定义域 D 看不等式 a x卫+b 十 c 0 的解集(不 为空集)a+b七。x 十麦)十 如气丁。a o,、电所有点(s f(t)(其中stD)构 成个 正 方 形 区 域 意味 着方 程、a 十b c+co 的两根c 12 应满足 l初 2 缸专丁,由韦达 定理 知 丝云里多一等 詈。,4aa2a o,故 选 B二 填空题 本大题共 4 个小题 每小题 5 分 共 20
2、 分14 三 解答题 本大题共 6 个小题 共 7 0 分 解答应 写 出文字说 明 证 明过程或演算步骤17【解析】(I)A NB c 3x 6 多。因为 C.B c l万 2 或 姓9 所 以(C R B U八)万 2 或 3 6 或 姓9(玒)因为 C B如 图所示a 2所 以a +19解得 2 a 82 a a+19 x所 以 所求集合 为a 2a 8(玒)依 题 意并由(I)可 得 f(-,2 0 4 2 o o当 0,20 时,f()为増函数:竺故 当.20 时,其最大值 为 60 20=120 0 i*即燮-2018 学年度高 第 学职第次阶段性检测数学参考答案1湖南师大附 中2
3、0172018 学年度高 第学期第次阶段 七物1数学参考答案卫難 苏 獵血鼠严翳摹群勰窆础理 梵蟹望再 由 已 知 得:二:月F何b 警解得a 二专故 函 数 试 x)的表达 式为 试 )18【解析X I)原 式 隅)告(誓)专+c山+1 专 专蘸薰4 分号十专十 1 1由 扫描全能王 扫描创建翠;1000 0当且 仅 当 20 0 l 即c100 时 等号成立所 以,当 10 0 时,f(姓)在区阢 加,200 上取得最大值笋综上当 100 时 f(c)在区 间仁02o0】上 取得最大值号些划 3333即当车流 密度 为 100 辆/千米 时,车流 量可 以 达 到最大,最大值 约 为333
4、3 辆/小 时2 1【解析】(I)任取 1,C2 0且 自 2!(ll-X z)(?zX 1 X zn)则 f(1)f(2)?n1 十?u2X1 X Z X 1 X Z:巳x)f x z)0 即 l(在中,)上 卑调 运氛些 1x z十时m x 1 2 0f(c1)l(x z)0呷 f()粗十 以 门上卑调 递 增及分(玨)令 2t 则。t+2,t 专2t$令 p(t)a t+宁2t 专2原命题 等价 于 g)(t)p(t)i 守 对 于 t 专2恒成立6 分。1 时,一 在专2上 单调 递 增。a 在专,2上 单调 递增 或为常数 函 氯此 时。!p(t)$l专2上单调递 增(t)1p(2)
5、丛 弩丝p(t)(专)苦j(哿)守 解得。号(舍去).8 分。1 时由可 得 yc t)在 专2上 单调 递 增此 时解得。.去 1o 分圆扣 时 由可得 y怀 t)在【告,月下)单调 递 减 在一(2).(专)。,学期第次阶段性检测 数学参考答案33王百瓦工,qp(t)n=甲2 五三飞万 一 2,(t)一3 d 1)2 天千瓦万十 2守,解得。,综上 l a 的取值 范围为专,告12 分22【解析】(I)取 自cz 0 得 f(0)f(0)+f(0)=f(0)0,又 由 f(0)O,得 f(0)0(n)显 然 g(c)分1 在 o 门上 满足 g(1)1,g(习 o 若 勾 0!而 0,且
6、1+c 2 1则有 g(x+2)仁g(1)+g(2 月2l +21(211)+(221)】(1)(0故 g(c)分1 满足 条件矼)圆 所 以 g(园21 为友 谊 函 数(?)由知 任 取 z z 1仁0,1 其 中 z 而,且 有 x 三十 而 1 不妨设:c 2c 1+&c(c 0)则 必 有 O 刀 1)所以八 c z)f(1)1+八 厂 )急)+f 铋 园八団0所以 八 cz)1)依 题 意 必 有 八 x o)下 面 用反 证 法证 明 假 设 f(x o)x o则有 x o f(x o)或 z o f(a b)(1)若c o 八 x o)则 f(x o)几只 马 刁两这 与 x o f(x o)矛盾(2)若 x o f(z o)则 f(o)兀f(自 习勐这 与z o f(x b)矛盾 芬故 由上 述(1)(2)证 明知 假 设 不 成立则 必 有 f(而)a b,证 毕$考答案与毒$专 1 2)上 单调 递增椰本庸 车船 1720 18 学年度高第W:湖南六大附中20172018 学年度高第如 学期第次阶段性撞倒 数学夢石