1、空间直角坐标系1.如何借助平面直角坐标系表示学生的座位?能用平面直角坐标系表示教室里的灯泡吗?问题引入:要表示空间的某一个位置,必须用空间直角坐标系来表示。思考:从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz,点O叫做坐标原点,x轴、y轴和z轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy平面、yOz平面和xOz平面。如何建立空间直角坐标系?知识点:将空间直角坐标系画在纸上时,x轴与y轴、x轴与z轴均成135,而z轴垂直于y轴,y轴和z轴的长度单位相同,x轴上的单位长度为y轴(或z轴)的长度的一半,这样三条轴上的单位长度在直观上大
2、体相等。yzx从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz,点O叫做坐标原点,x轴、y轴和z轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy平面、yOz平面和xOz平面。如何建立空间直角坐标系?知识点:yOz平面xOz平面xOy平面点在对应数轴上的坐标依次为x、y、z,我们把有序实数对(x,y,z)叫做点A的坐标,记为A(x,y,z)。在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向,则称这个坐标系为右手直角坐标系。本书上所指的都是右手直角坐标系。知识点:例1在空间直角坐标系中,作出点
3、P(3,2,1).例题选讲:yzxP(3,2,1)如图,长方体ABCD-ABCD的边长为 AB=12,AD=8,AA=5.以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为,x轴、y轴和z轴的正半轴,建立空间直角 坐标系,求长方体各个顶点的坐标。例题选讲:例2yxzA(0,0,0)B(12,0,0)C(12,8,0)D(0,8,0)C(12,8,5)B(12,0,5)A(0,0,5)D(0,8,5)如图,长方体ABCD-ABCD的边长为 AB=12,AD=8,AA=5.以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为,x轴、y轴和z轴的正半轴,建立空间直角 坐标系,求长方体各
4、个顶点的坐标。例题选讲:例2yxzA(0,0,0)B(12,0,0)C(12,8,0)D(0,8,0)C(12,8,5)B(12,0,5)A(0,0,5)D(0,8,5)在平面xOy的点有哪些?这些点的坐标有什么共性?如图,长方体ABCD-ABCD的边长为 AB=12,AD=8,AA=5.以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为,x轴、y轴和z轴的正半轴,建立空间直角 坐标系,求长方体各个顶点的坐标。例题选讲:例2yxzA(0,0,0)B(12,0,0)C(12,8,0)D(0,8,0)C(12,8,5)B(12,0,5)A(0,0,5)D(0,8,5)在平面xOz的点有哪些
5、?这些点的坐标有什么共性?如图,长方体ABCD-ABCD的边长为 AB=12,AD=8,AA=5.以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为,x轴、y轴和z轴的正半轴,建立空间直角 坐标系,求长方体各个顶点的坐标。例题选讲:例2yxzA(0,0,0)B(12,0,0)C(12,8,0)D(0,8,0)C(12,8,5)B(12,0,5)A(0,0,5)D(0,8,5)在平面yOz的点有哪些?这些点的坐标有什么共性?在空间直角坐标系中,x轴上的点、y轴上的点、z轴上的点,xOy坐标平面内的点、xOz坐标平面内的点、yOz坐标平面内的点的坐标各具有什么特点?总结:x轴上的点的坐标的特点:xOy坐标平面内的点的特点:xOz坐标平面内的点的特点:yOz坐标平面内的点的特点:y轴上的点的坐标的特点:z轴上的点的坐标的特点:(m,0,)(,m,)(,0,m)(m,n,)(,m,n)(m,0,n)(1)在空间直角坐标系O-xyz中,画出不共线 的3个点P,Q,R,使得这3个点的坐标都 满足z=3,并画出图形;(2)写出由这三个点确定的平面内的点的坐标 应满足的条件.例题选讲:例yzx书上P1练习,3