ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:342.50KB ,
资源ID:106615      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-106615-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2011年高考预测试题三解析几何解答题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2011年高考预测试题三解析几何解答题.doc

1、高考资源网() 您身边的高考专家2011年高考预测试题三解析几何解答题版本:新课标人教A、B适用省份:山东、广东、宁夏、海南2011年高考对解析几何的考查主要包括以下内容:直线与圆的方程、圆锥曲线等,在高考试卷中一般有12个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,而解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇等,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等,解析几何试题的特点是思维量大、运算量大,所以应加强对解析几何重点题型的训练。问题设置的

2、方向为:(1)以椭圆为入口,求标准方程;(2)几何性质;(3)范围或最值性问题。解题的策略有:1、注意直线倾斜角范围 、设直线方程时注意斜率是否存在,可以设成 ,包含斜率不存在情况,但不包含斜率为0情况。注意截距为0的情况;注意点关于直线对称问题(光线的反射问题);注意证明曲线过定点方法(两种方法:特殊化、分离变量)2、注意二元二次方程表示圆的充要条件、善于利用切割线定理、相交弦定理、垂径定理等平面中圆的有关定理解题;注意将圆上动点到定点、定直线的距离的最值转化为圆心到它们的距离;注意圆的内接四边形的一些性质以及正弦定理、余弦定理。以过某点的线段为弦的面积最小的圆是以线段为直径,而面积最大时,

3、是以该点为线段中点。3、注意圆与椭圆、三角、向量(注意利用加减法转化、利用模与夹角转化、然后考虑坐标化)结合;4、注意构建平面上的三点模型求最值,一般涉及“和”的问题有最小值,“差”的问题有最大值,只有当三点共线时才取得最值;5、熟练掌握求椭圆方程、双曲线方程、抛物线方程的方法:待定系数法或定义法,注意焦点位置的讨论,注意双曲线的渐近线方程:焦点在 轴上时为 ,焦点在 轴上时为 ;注意化抛物线方程为标准形式(即2p、p、 的关系);注意利用比例思想,减少变量,不知道焦点位置时,可设椭圆方程为 。6、熟练利用圆锥曲线的第一、第二定义解题; 熟练掌握求离心率的题型与方法,特别提醒在求圆锥曲线方程或

4、离心率的问题时注意利用比例思想方法,减少变量。7、注意圆锥曲线中的最值等范围问题:产生不等式的条件一般有:“ 法”;离心率 的范围;自变量 的范围;曲线上的点到顶点、焦点、准线的范围;注意寻找两个变量的关系式,用一个变量表示另一个变量,化为单个变量,建立关于参数的目标函数,转化为函数的值域 当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法, 注意点是要考虑曲线上点坐标(x,y)的取值范围、离心率范围以及根的判别式范围。8、求轨迹方程的常见方法:直接法;几何法;定义法;相关点法; 9、注意利用向量方法, 注意垂直、平行、中点等条件以向量形式给出;注意将有关向量的表达式合理变形;特

5、别注意遇到角的问题,可以考虑利用向量数量积解决;10、注意存在性、探索性问题的研究,注意从特殊到一般的方法。预测1、(12分)(理科)已知椭圆的左、右焦点分别为F1和F2 ,以F1 、F2为直径的圆经过点M(0,b).(1)求椭圆的方程;(2)设直线l与椭圆相交于A,B两点,且.求证:直线l在y轴上的截距为定值。解析:(1)由题设知,又,所以,故椭圆方程为;2分(2)因为,所以直线与x轴不垂直.设直线的方程为,.由得,所以,6分又,所以,即,整理得,即,10分因为,所以,展开整理得,即.直线l在y轴上的截距为定值.12分动向解读:本题考查解析几何中的定点、定值或取值范围问题,这是一类综合性较强

6、的问题,也是近几年高考对解析几何考查的一个重点和热点内容.这类问题以直线与圆锥曲线德位置关系为载体,以参数处理为核心,需要综合运用函数、方程、不等式、平面向量等诸多数学知识以及数形结合、分类讨论等多种数学思想方法进行求解,对考生的代数恒等变形能力、化简计算能力有较高的要求.预测2、(12分)(适合文科)已知圆,直线过椭圆的右焦点,且交圆C所得的弦长为,点在椭圆E上. (1)求m的值及椭圆E的方程;(2)设Q为椭圆E上的一个动点,求的取值范围.解析:(1)因为直线交圆C所得的弦长为所以圆心到直线的距离等于即,所以(舍去)。3分又因为直线过椭圆E的右焦点,所以右焦点坐标为则左焦点F1的坐标为,因为

7、椭圆E过A点,所以,所以,故椭圆E的方程为:6分(2),则,设,则由,消去得,9分由于直线与椭圆E有公共点,所以,所以,故的取值范围为.12分动向解读:本题考查解析几何中的定点、定值或取值范围问题,这是一类综合性较强的问题,也是近几年高考对解析几何考查的一个重点和热点内容.这类问题以直线与圆锥曲线德位置关系为载体,以参数处理为核心,需要综合运用函数、方程、不等式、平面向量等诸多数学知识以及数形结合、分类讨论等多种数学思想方法进行求解,对考生的代数恒等变形能力、化简计算能力有较高的要求.预测3、(12分)(适合理科)已知抛物线C:上任意一点到焦点F的距离比到y轴的距离大1。(1)求抛物线C的方程

8、;(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题 例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”求出体积后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为,求侧棱长”;也可以是“若正四棱锥的体积为,求所有侧面面积之和的最小值” 现有正确命题:过点的直线交抛物线C:于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F。 试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问

9、题。解析:(1);2分(2)设(t0),则,F(1,0)。因为M、F、N共线,则有,所以,解得,所以,因而,直线MN的方程是。6分(3)“逆向问题”一:已知抛物线C:的焦点为F,过点F的直线交抛物线C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点。8分证明:设过F的直线为y=k(x),则,由得,所以, , =,所以直线RQ必过焦点A。12分过点的直线交抛物线C于P、Q两点,FP与抛物线交于另一点R,则RQ垂直于x轴。已知抛物线C:,过点B(m,0 )(m0)的直线交抛物线C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点A(-m,0)。 “逆向问题”二:已知椭圆C:的焦点为F1(-c,0),F2(c,0),过F2的直线交椭圆C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点。 “逆向问题”三:已知双曲线C:的焦点为F1(-c,0),F2(c,0),过F2的直线交双曲线C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点。动向解读:本题考查椭抛物线的定义、直线与其的位置关系等问题,是一道多知识点的综合性小题,这正体现了高考数学命题所追求的“在知识交汇点处命题”的原则.值得注意的是:本题中结论没有直接给出,而是要借助合情推理的知识进行分析求解,才能得到有关的结论.w.w.w.k.s.5.u.c.o.m- 7 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3