1、高考资源网() 您身边的高考专家三角函数的概念【考点导读】1 理解任意角和弧度的概念,能正确进行弧度与角度的换算角的概念推广后,有正角、负角和零角;与终边相同的角连同角本身,可构成一个集合;把长度等于半径的圆弧所对的圆心角定义为1弧度的角,熟练掌握角度与弧度的互换,能运用弧长公式及扇形的面积公式(为弧长)解决问题.2 理解任意角的正弦、余弦、正切的定义.角的概念推广以后,以角的顶点为坐标原点,角的始边为x轴的正半轴,建立直角坐标系,在角的终边上任取一点(不同于坐标原点),设(),则的三个三角函数值定义为:从定义中不难得出六个三角函数的定义域:正弦函数、余弦函数的定义域为R;正切函数的定义域为3
2、 掌握判断三角函数值的符号的规律,熟记特殊角的三角函数值由三角函数的定义不难得出三个三角函数值的符号,可以简记为:一正(第一象限内全为正值),二正弦(第二象限内只有正弦值为正),三切(第三象限只有正切值为正),四余弦(第四象限内只有余弦值为正)另外,熟记、的三角函数值,对快速、准确地运算很有好处.4 掌握正弦线、余弦线、正切线的概念在平面直角坐标系中,正确地画出一个角的正弦线、余弦线和正切线,并能运用正弦线、余弦线和正切线理解三角函数的性质、解决三角不等式等问题【基础练习】1 化成的形式是 第二或第四象限2已知为第三象限角,则所在的象限是 3已知角的终边过点,则=, = 正4的符号为 5已知角
3、的终边上一点(),且,求,的值解:由三角函数定义知,当时,;当时, ,【范例解析】例1.如图,分别是终边落在,位置上的两个角,且,(1)求终边落在阴影部分(含边界)时所有角的集合;(2)终边落在阴影部分,且在区间时所有角的集合;(3)求始边在位置上,终边在位置上所有角的集合解:(1);(2);(3),点评:三角函数中应注意文字语言与符号语言的转化;第(3)问要注意角的方向例2.(1)已知角的终边经过一点,求的值;(2)已知角的终边在一条直线上,求,的值分析:利用三角函数定义求解解:(1)由已知,当时,则;当时,则(2)设点是角的终边上一点,则;当时,角是第一象限角,则;当时,角是第三象限角,则
4、点评:要注意对参数进行分类讨论例3.(1)若,则在第_象限(2)若角是第二象限角,则,中能确定是正值的有_个解:(1)由,得,同号,故在第一,三象限(2)由角是第二象限角,即,得,故仅有为正值点评:准确表示角的范围,由此确定三角函数的符号例4. 一扇形的周长为,当扇形的圆心角等于多少时,这个扇形的面积最大?最大面积是多少?分析:选取变量,建立目标函数求最值解:设扇形的半径为x,则弧长为,故面积为,当时,面积最大,此时,所以当弧度时,扇形面积最大25点评:由于弧度制引入,三角函数就可以看成是以实数为自变量的函数【反馈演练】二1若且则在第_象限 三2已知,则点在第_象限3已知角是第二象限,且为其终
5、边上一点,若,则m的值为_4将时钟的分针拨快,则时针转过的弧度为5若,且与终边相同,则= 6已知1弧度的圆心角所对的弦长2,则这个圆心角所对的弧长是_,这个圆心角所在的扇形的面积是_ 三7已知,则点在第 象限8已知,角的终边与的终边关于直线对称,则角的集合为_ 三9设是第二象限角,且满足,则是第_象限的角10(1)已知扇形的周长是6cm,该扇形中心角是1弧度,求该扇形面积(2)若扇形的面积为8,当扇形的中心角为多少弧度时,该扇形周长最小简解:(1)该扇形面积2;(2),得,当且仅当时取等号此时,11已知角的顶点在原点,始边为轴的非负半轴,终边在直线上,求的值解:当角在第一象限时,则;当角在第三象限时,则12已知,且,判断的符号 解:由已知是第二象限,则,故 高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 ) 版权所有高考资源网