1、2.2 不等式的基本性质学习目标: 1.探索并掌握不等式的基本性质; 2.理解不等式与等式性质的联系与区别. 3.通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.学习重点: 探索不等式的基本性质,并能灵活地掌握和应用.学习难点: 能根据不等式的基本性质进行化简.回顾等式的基本性质: 等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.预习作业:学习教材P7-P8的内容,通过学习弄清以下问题:1. 不等式的基本性质有哪些?不等式的基本性质1:不等式的两边都加上
2、(或减去)同一个整式,不等号的方向_不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向2. 不等式的基本性质与等式的基本性质有什么异同?例1、将下列不等式化成“xa”或“xa”的形式:(1)x51; (2)2x3; (3)3x9.(4) (5) (6)说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.2已知,下列不等式一定成立吗?(1) (2) (3) (4)议一议: 1. 讨论下列式子的正确与错误.(1)如果ab,那么a+cb+c; (2)如果
3、ab,那么acbc;(3)如果ab,那么acbc; (4)如果ab,且c0,那么.2.设ab,用“”或“”号填空.(1)a+1 b+1; (2)a3 b3; (3)3a 3b;(4) ; (5) ; (6)a b.变式训练:1.根据不等式的基本性质,把下列不等式化成“xa”或“xa”的形式:(1)x23; (2)6x5x1;(3)x5; (4)4x3. 2.设ab.用“”或“”号填空.(1)a3 b3; (2) ; (3)4a 4b; (4)5a 5b;(5)当a0,b 0时,ab0; (6)当a0,b 0时,ab0;(7)当a0,b 0时,ab0; (8)当a0,b 0时,ab0. 能力提高:1.比较a与a的大小. ( 说明:解决此类问题时,要对字母的所有取值进行讨论.)2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?