ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:201.50KB ,
资源ID:1065328      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1065328-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019版高考数学(理)创新大一轮人教B全国通用版讲义:第十二章 推理与证明、算法、复数 第2节 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019版高考数学(理)创新大一轮人教B全国通用版讲义:第十二章 推理与证明、算法、复数 第2节 WORD版含解析.doc

1、第2节直接证明与间接证明最新考纲1.了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程和特点;2.了解间接证明的一种基本方法反证法;了解反证法的思考过程和特点.知 识 梳 理1.直接证明内容综合法分析法定义从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实的方法,是一种从结果追溯到产生这一结果的原因的思维方法特点从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是要寻找它的必要条件从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻

2、找它的充分条件步骤的符号表示P0(已知)P1P2P3P4(结论)B(结论)B1B2BnA(已知)2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:一般地,由证明pq转向证明:綈qrtt与假设矛盾,或与某个真命题矛盾,从而判定綈q为假,推出q为真的方法,叫做反证法.(2)用反证法证明的一般步骤:分清命题的条件和结论;做出与命题结论相矛盾的假定;由假定出发,应用正确的推理方法,推出矛盾的结果;断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明命题为真.诊 断 自 测1.思考辨析(在括号内打“”或“”)(1)分析法是

3、从要证明的结论出发,逐步寻找使结论成立的充要条件.()(2)用反证法证明结论“ab”时,应假设“ab”.()(3)反证法是指将结论和条件同时否定,推出矛盾.()(4)在解决问题时,常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()解析(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件.(2)应假设“ab”.(3)反证法只否定结论.答案(1)(2)(3)(4)2.若a,b,c为实数,且ab0,则下列命题正确的是()A.ac2abb2C.解析a2aba(ab),ab0,ab0,a2ab.又abb2b(ab)0,abb2,由得a2abb2.答案B3.要证a2b21a2b2

4、0,只要证明()A.2ab1a2b20 B.a2b210C.1a2b20 D.(a21)(b21)0解析a2b21a2b20(a21)(b21)0.答案D4.用反证法证明:若整系数一元二次方程ax2bxc0(a0)有有理数根,那么a,b,c中至少有一个是偶数.用反证法证明时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数解析“至少有一个”的否定为“都不是”,故B正确.答案B5.(教材例题改编)在ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则ABC的形

5、状为_.解析由题意2BAC,又ABC,B,又b2ac,由余弦定理得b2a2c22accos Ba2c2ac,a2c22ac0,即(ac)20,ac,AC,ABC,ABC为等边三角形.答案等边三角形考点一综合法的应用【例1】 数列an满足an1,a11.(1)证明:数列是等差数列;(2)(一题多解)求数列的前n项和Sn,并证明.(1)证明an1,化简得2,即2,故数列是以1为首项,2为公差的等差数列.(2)解由(1)知2n1,Snn2.法一1.法二1,又1,.规律方法1.综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题

6、)出发,经过一系列中间推理,最后导出所要求证结论的真实性.2.综合法的逻辑依据是三段论式的演绎推理.【训练1】 (2018东北三省三校调研)已知a,b,c0,abc1.求证:(1);(2).证明(1)()2(abc)222(abc)(ab)(bc)(ca)3,.(2)a0,3a10,(3a1)24,当且仅当3a1,即a时取“”.33a,同理得33b,33c,以上三式相加得493(abc)6,当且仅当abc时取“”.考点二分析法的应用【例2】 已知ab0,求证:2a3b32ab2a2b.证明要证明2a3b32ab2a2b成立,只需证2a3b32ab2a2b0,即2a(a2b2)b(a2b2)0,

7、即(ab)(ab)(2ab)0.ab0,ab0,ab0,2ab0,从而(ab)(ab)(2ab)0成立,2a3b32ab2a2b.规律方法1.逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.2.证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【训练2】 ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:.证明要证,即证3也就是1,只需证c(bc)a(ab)(ab)(bc),需证c2a2acb2,又ABC三内

8、角A,B,C成等差数列,故B60,由余弦定理,得b2c2a22accos 60,即b2c2a2ac,故c2a2acb2成立.于是原等式成立.考点三反证法的应用【例3】 等差数列an的前n项和为Sn,a11,S393.(1)求数列an的通项an与前n项和Sn;(2)设bn(nN+),求证:数列bn中任意不同的三项都不可能成为等比数列.(1)解由已知得解得d2,故an2n1,Snn(n).(2)证明由(1)得bnn.假设数列bn中存在三项bp,bq,br(p,q,rN+,且互不相等)成等比数列,则bbpbr.即(q)2(p)(r).(q2pr)(2qpr)0.p,q,rN+,q2pr,(pr)20

9、.pr,与pr矛盾.数列bn中任意不同的三项都不可能成为等比数列.规律方法1.当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.2.用反证法证明不等式要把握三点:(1)必须否定结论;(2)必须从否定结论进行推理;(3)推导出的矛盾必须是明显的.【训练3】 (2018郑州一中月考)若f(x)的定义域为a,b,值域为a,b(a2),使函数h(x)是区间a,b上的“四维光军”函数?若存在,求出a,b的值;若不存在,请说明理由.解(1)由题设得g(x)(x1

10、)21,其图象的对称轴为x1,区间1,b在对称轴的右边,所以函数在区间1,b上单调递增.由“四维光军”函数的定义可知,g(1)1,g(b)b,则b2bb,解得b1或b3.因为b1,所以b3.(2)假设函数h(x)在区间a,b(a2)上是“四维光军”函数,因为h(x)在区间(2,)上单调递减,所以有即解得ab,这与已知矛盾.故不存在常数a,b使函数h(x)是a,b上的“四维光军”函数.基础巩固题组(建议用时:40分钟)一、选择题1.用反证法证明命题:“三角形三个内角至少有一个不大于60”时,应假设()A.三个内角都不大于60B.三个内角都大于60C.三个内角至多有一个大于60D.三个内角至多有两

11、个大于60解析“至少有一个”的否定是“一个都没有”,故可以理解为都大于60.答案B2.已知m1,a,b,则以下结论正确的是()A.ab B.a0(m1),即a0 B.a2b22(ab1)C.a23ab2b2 D.解析在B中,a2b22(ab1)(a22a1)(b22b1)(a1)2(b1)20,a2b22(ab1)恒成立.答案B4.分析法又称“执果索因法”,若用分析法证明:“设abc,且abc0,求证a”索的因应是()A.ab0 B.ac0C.(ab)(ac)0 D.(ab)(ac)0解析由题意知ab2ac3a2(ac)2ac3a2a22acc2ac3a202a2acc202a2acc20(a

12、c)(2ac)0(ac)(ab)0.答案C5.已知p3q32,求证pq2,用反证法证明时,可假设pq2;已知a,bR,|a|b|40,2.答案27.用反证法证明命题“a,bR,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是_.解析“至少有一个能被5整除”的否定是“都不能被5整除”.答案“a,b都不能被5整除”8.下列条件:ab0,ab0,b0,a0,b0成立,即a,b不为0且同号即可,故能使2成立.答案三、解答题9.若a,b,c是不全相等的正数,求证:lglglglg alg blg c.证明a,b,c(0,),0,0,0.又上述三个不等式中等号不能同时成立.abc成立

13、.上式两边同时取常用对数,得lglg abc,lglglglg alg blg c.10.设数列an是公比为q的等比数列,Sn是它的前n项和.(1)求证:数列Sn不是等比数列;(2)数列Sn是等差数列吗?为什么?(1)证明假设数列Sn是等比数列,则SS1S3,即a(1q)2a1a1(1qq2),因为a10,所以(1q)21qq2,即q0,这与公比q0矛盾,所以数列Sn不是等比数列.(2)解当q1时,Snna1,故Sn是等差数列;当q1时,Sn不是等差数列,否则2S2S1S3,即2a1(1q)a1a1(1qq2),得q0,这与公比q0矛盾.综上,当q1时,数列Sn是等差数列;当q1时,数列Sn不

14、是等差数列.能力提升题组(建议用时:20分钟)11.(2018日照开学考试)设x,y,z0,则三个数,()A.都大于2 B.至少有一个大于2C.至少有一个不小于2 D.至少有一个不大于2解析因为6,当且仅当xyz时等号成立.所以三个数中至少有一个不小于2,故选C.答案C12.(2016全国卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_.解析根据丙的说法及乙看了丙的卡片后的说法进行推理.由丙说“

15、我的卡片上的数字之和不是5”,可推知丙的卡片上的数字是1和2或1和3.又根据乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”可知,乙的卡片不含1,所以乙的卡片上的数字为2和3.再根据甲的说法“我与乙的卡片上相同的数字不是2”可知,甲的卡片上的数字是1和3.答案1和313.设a,b,c,d均为正数,且abcd,证明:(1)若abcd,则;(2)是|ab|cd得()2()2.因此.(2)若|ab|cd|,则(ab)2(cd)2,即(ab)24abcd.由(1)得.若,则()2()2,即ab2cd2.因为abcd,所以abcd,于是(ab)2(ab)24ab(cd)24cd(cd)2.因此|ab|是|ab|cd|的充要条件.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3