ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.33MB ,
资源ID:10565      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-10565-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海市七宝中学2020届高三数学三模考试试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

上海市七宝中学2020届高三数学三模考试试题(含解析).doc

1、上海市七宝中学2020届高三数学三模考试试题(含解析)一.填空题1.已知集合,则_【答案】【解析】【分析】利用集合的交运算即可求解.【详解】由集合,则.故答案为:【点睛】本题考查了集合的基本运算,解题的关键是理解集合中的元素特征,属于基础题.2.若直线方程的一个法向量为,则此直线的倾斜角为_【答案】【解析】【分析】根据题意首先求出直线的一个方向向量,然后再求出直线的斜率,根据直线的斜率与倾斜角的关系即可求解.【详解】设直线的一个方向向量为 由直线方程的一个法向量为,所以,令,则 所以直线的一个方向向量为,设直线的倾斜角为,由,所以直线的倾斜角为:.故答案:【点睛】本题考查了直线的法向量、方向向

2、量、直线的斜率与倾斜角的关系,属于基础题.3.已知复数满足(为虚数单位),则_【答案】【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由,得,.故答案为:.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.4.已知、是任意实数,能够说明“若,则”是假命题的一个有序整数组可以是_【答案】(答案不唯一)【解析】【分析】根据题意,适当的进行赋值验算即可求解【详解】根据题意,要说明其为假命题,可以令,此时满足,但不成立,故原命题为假命题.故答案为:(答案不唯一)【点睛】本题主要考查命题及其关系,属于基础题.5.函数(,是虚数单位)的图象与直线有且仅

3、有一个交点,则实数_【答案】【解析】【分析】先通过复数模的求法得到函数,再利用数形结合法求解.【详解】函数,函数图象为双曲线的一支,如图所示:又因为函数图象与有且仅有一个交点,则.故答案为:2【点睛】本题主要考查复数的模的几何意义以及函数图象的交点问题,还考查了数形结合的思想方法,属于基础题.6.直角坐标系内有点,将四边形ABCD绕直线旋转一周,所得到的几何体的体积为_【答案】【解析】【分析】四边形是矩形,边在直线上,旋转一周后得一圆柱,是圆柱的高,是底面半径,由此可计算体积。【详解】由题意四边形是矩形,边在直线上,旋转一周后所得几何体为圆柱,是圆柱的高,是底面半径,。故答案为:。【点睛】本题

4、考查圆柱的体积,考查圆柱的定义。属于基础题。7.在中,为的中点,则_.【答案】;【解析】【分析】计算,然后将用表示,最后利用数量积公式可得结果.【详解】由,所以又为的中点,所以所以故答案为:【点睛】本题考查向量的数量积运算,给出已知的线段与相应的夹角,通常可以使用向量的方法,将几何问题代数化,便于计算,属基础题.8.通过手机验证码登录哈喽单车App,验证码由四位数字随机组成,如某人收到的验证码满足,则称该验证码为递增型验证码,某人收到一个验证码,那么是首位为2的递增型验证码的概率为_【答案】【解析】【分析】利用概率定义进行求解即可.【详解】,、从中39选,只要选出3个数,让其按照从小到大的顺序

5、排,分别对应即可,.故答案为:【点睛】本题考查概率的定义,属于简单题9.已知函数()的反函数为,当时,函数的最大值为,最小值为,则_【答案】2【解析】【分析】由,得到函数在定义域上单调递增,再由函数与反函数具有相同的单调性以及平移变换,得到在上单调递增,再由函数与反函数具有相同的奇偶性求解.【详解】因为,所以函数()在定义域上单调递增,因为函数与反函数有相同的单调性,所以在上单调递增,在上单调递增,因为为奇函数,则也为奇函数,.故答案为:2【点睛】本题主要考查函数与反函数的性质,还考查了转化求解问题的能力,属于中档题.10.欧拉公式,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的联

6、系,被誉为“数学中的天桥”,已知数列的通项公式为(),则数列前2020项的乘积为_【答案】【解析】【分析】根据题意,然后可得,然后,利用等差数列求和公式求解即可【详解】,.故答案为:【点睛】本题考查指数的乘积运算以及等差数列的求和,属于简单题11.用表示函数在闭区间上的最大值,若正数满足,则的最大值为_【答案】【解析】【分析】对进行分类讨论,根据正弦函数的单调性求出在区间和的最大值,再解不等式即可得到答案.【详解】当时,.所以,舍去;当时,所以,即:,得到;当时,或,因为,所以,即:,所以;当时,不满足,舍去;综上所述:.故答案为:【点睛】本题主要考查三角函数的最值问题,同时考查了分类讨论的思

7、想,属于难题.12.已知数列的首项为,且满足,则下列命题:是等差数列;是递增数列;设函数,则存在某个区间,使得在上有唯一零点;则其中正确的命题序号为_【答案】【解析】【分析】对于,将已知递推关系式变形可证得数列为等比数列;对于,结合等比数列通项公式可求得,可验证出,知数列递增;对于,结合指数函数单调性可确定单调性,利用零点存在定理可得到结论.【详解】对于,由得:,又,是首项为,公比为的等比数列,错误;对于,由知:,是递增数列,正确;对于,由知:,单调递减,单调递增,当时,即,由零点存在定理知正确;综上所述:正确的命题序号为.故答案为:.【点睛】本题考查数列与函数综合应用问题,涉及到利用递推关系

8、式证明数列为等比数列、根据递推关系式求解数列通项公式和确定数列增减性、零点存在定理的应用等知识;解题关键是能够熟练掌握数列增减性和函数单调性的判断方法.二.选择题13.设、分别是直线、的方向向量,则“”是“”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】根据充分条件、必要条件的定义判断即可;【详解】解:若,则一定有,但可能推出和重合,“”是“”的充分非必要条件.故选:A【点睛】本题考查充分条件、必要条件的判断,属于基础题.14.某学校有2500名学生,其中高一600人,高二800人,高三1100人,为了了解学生的身体健康状况,

9、采用分层抽样的方法,若从本校学生中抽取100人,从高一和高二抽取样本本数分别为、,且直线与以为圆心的圆交于、两点,且,则圆的方程为( )A. B. C. D. 【答案】C【解析】【分析】利用分层抽样的概念,先求出与,然后求出直线方程,然后,根据圆与直线的位置关系求出圆心到直线的距离,进而求解即可.【详解】高一:高二:高三为,该直线方程为,即,圆心到直线的距离,又,该圆的方程为.故选:C【点睛】本题考查分层抽样的概念,属于基础题15.函数的图像按向量平移后所得图像的函数解析式为,当函数为奇函数时,向量可以等于( )A. B. C. D. 【答案】B【解析】【分析】由左加右减上加下减的原则可确定函

10、数到的路线,进而确定向量.【详解】,将函数向左平移个单位,再向上平移2个单位可得到为奇函数,故选:B.【点睛】本题主要考查三角函数图象平移,三角函数的平移原则为左加右减上加下减,注意向量的平移的方向,属于基础题.16.已知为抛物线焦点,、为抛物线上三点,当时,则存在横坐标的点、有( )A. 0个B. 2个C. 有限个,但多于2个D. 无限多个【答案】A【解析】【分析】首先判断出为的重心,根据重心坐标公式可得,结合基本不等式可得出,结合抛物线的定义化简得出,同理得出,进而得出结果.【详解】设,先证,由知,为的重心,又,同理,故选:A.【点睛】本题主要考查了抛物线的简单性质,基本不等式的应用,解本

11、题的关键是判断出点为三角形的重心,属于中档题.三.解答题17.如图,四棱柱的底面是正方形,为底面中心,平面,.(1)证明:;(2)求直线与平面所成的角的大小.【答案】(1)证明见解析;(2)【解析】【分析】(1)通过线面垂直判定定理证明平面,进而得到;(2)取中点,联结,通过已知条件得出四边形为正方形,得出即为所求角,进而可得结果.【详解】(1)由题意易得:,又平面,平面,又,平面,又平面,(2)取中点,联结,又,底面是正方形,由题意易得为直角三角形,由棱柱的性质以及平面,可得四边形为正方形,由(1)得,,面,即为所求角,且大小为,即直线与平面所成的角为.【点睛】本题主要考查了通过线面垂直得出

12、线线垂直,直线与平面所成角的求法,属于中档题.18.设、分别是内角、所对的边,.(1)求角的大小;(2)若,且的面积为,求的周长.【答案】(1)(2)【解析】【分析】(1)利用两角差余弦公式化简可得,即可得到角A的大小;(2)根据面积结合(1)可得,利用余弦定理求得,即可得到三角形周长.【详解】(1)由题意可得:(2)由又,周长为.【点睛】此题考查根据三角形已知关系求解三角形内角,根据面积关系和余弦定理化简求周长,需要熟练掌握余弦定理和面积公式.19.受疫情影响,某电器厂生产的空调滞销,经研究决定,在已有线下门店销售的基础上,成立线上营销团队,大力发展“网红”经济,当线下销售人数为(人)时,每

13、天线下销售空调可达(百台),当线上销售人数为(人)()时,每天线上销量达到(百台).(1)解不等式:,并解释其实际意义;(2)若该工厂大有销售人员()人,按市场需求,安排人员进行线上或线下销售,问该工厂每天销售空调总台数的最大值是多少百台?【答案】(1)不等式的解集为,实际意义见解析(2)答案不唯一,具体见解析【解析】【分析】(1)分别讨论当时和当时,解不等式即可得解;(2)结合题中分段函数,分段求解最值取得的条件即可得解.【详解】(1)当时,不等式为;当时,不等式为;综上,不等式解集为,实际意义为在相同的销售人数下,当销售人数在10到40之间时,线上销售的会比线下销售效果好(2)设安排线上销

14、售人,则线下销售安排人;当时,此时,每天的销售总台数为,当时,最大值在时取到,为(百台)当时,最大值在时取到,为(百台)当时,若,则最大值在时取到,为(百台)若,每天的销售总台数为,则最大值在时取到,为(百台).【点睛】此题考查函数模型及其应用,涉及分段函数最值处理方法,需要熟练掌握分类讨论方法求解.20.已知椭圆的两焦点为,且椭圆上一点,满足,直线与椭圆交于、两点,与轴、轴分别交于点、,且.(1)求椭圆的方程;(2)若,且,求的值;(3)当面积取得最大值,且点在椭圆上时,求的值.【答案】(1)(2)3(3)【解析】【分析】(1)根据椭圆定义焦点坐标计算基本量即可得解;(2)根据已知条件结合弦

15、长公式求得m,得出三点坐标,利用线段长度公式得解;(3)联立直线与椭圆方程,结合韦达定理表示出三角形面积,根据基本不等式求最值,即可得到此时的值.【详解】(1)由题意可得,椭圆方程为(2)由题意得,此时直线方程为,将其代入椭圆方程整理可得,其中设,则,由椭圆具有对称性,不妨取,则,(3)将直线方程代入椭圆方程整理可得,其中,设,则,原点到直线的距离,当且仅当时等号成立,又代入椭圆方程可得,其中,整理得再将代入,整理得,整理得,.【点睛】此题考查求椭圆方程,利用直线与圆的位置关系,结合韦达定理求解弦长和面积关系,综合性较强.21.已知数列满足:对任意,若,则,且,设,集合中元素的最小值记为;集合

16、,集合中元素最小值记为.(1)对于数列:,求,;(2)求证:;(3)求的最大值.【答案】(1)(2)证明见解析;(3)416【解析】【分析】(1)根据题目,直接代入求解即可.(2)利用反正法进行证明即可.(3)欲使尽可能大,则任意连续三项和要尽量整体控制大,然后,分类讨论即可进行求解【详解】(1)(2)若,记则,同样操作这三组数据得到,这与,矛盾,则,构造数列:(3)欲使尽可能大,则任意连续三项和要尽量整体控制大,如果放在数列中前后各有2个数,则这里对应含有项的3个连续和,这3个和值显然均大于,同理也去控制项有,这3个和值显然均大于,如果我们保证这6项不重叠,则8个和,就先处理了6个,剩下2个要使得最小值最大,就有如图排列这种排列:,则考虑其中,这一组的和记可以很快得到记,若,则这8个数字都要大于等于448,至多各对应3个数字,对应一个数字,那么这样最多只有7个数字大于等于448,矛盾构造数列:,则.【点睛】本题主要考查反证法的运用,要用到类比推理和归纳推理的数学思想,属于难题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3