ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:113.50KB ,
资源ID:1053905      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1053905-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新教材2020-2021高中人教A版数学选择性必修第三册素养检测:6-1 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

新教材2020-2021高中人教A版数学选择性必修第三册素养检测:6-1 分类加法计数原理与分步乘法计数原理 WORD版含解析.doc

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。一分类加法计数原理与分步乘法计数原理(30分钟60分)一、选择题(每小题5分,共30分)1.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有.()A.8种B.15种C.18种D.30种【解析】选A.由题意知本题是一个分类加法计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类加法计数原理知共有3+5=8种.2.如图所示,

2、从A地到B地要经过C地和D地,从A地到C地有3条路,从C地到D地有2条路,从D地到B地有4条路,则从A地到B地不同走法的种数是()A.9B.24C.3D.1【解析】选B.根据分步乘法计数原理得,从A地到B地不同走法的种数是324=24种.3.如果一条直线与一个平面垂直,那么称此直线与该平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36【解析】选D.分类讨论:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有212=24(个);第2类,对于每一条面对角线,都可以与一个对

3、角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).4.从6名志愿者中选4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有()A.280种B.240种C.180种D.96种【解析】选B.由于甲、乙不能从事翻译工作,因此翻译工作从余下的4名志愿者中选1人,有4种选法.后面三项工作的选法有543种,因此共有4543=240种不同的选派方案.5.已知直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示出的不同直线的条数为()A.19B.20

4、C.21D.22【解析】选D.当A或B中有一个为零时,则可表示出2条不同的直线;当AB0时,A有5种选法,B有4种选法,则可表示出54=20条不同的直线.由分类加法计数原理知,共可表示出20+2=22条不同的直线.6.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是()A.420B.180C.64D.25【解析】选B.由题意,由于规定一个区域只种一种花卉,相邻的区域花卉不同,可分步进行,区域A有5种种法,B有4种种法,若A,D种不同花卉,D有3种种法,C有2种种法,有5432=120种,若A,D种相同花卉,D有1种种法,C有3种种法,

5、有543=60种,共有180种不同的种植方法.二、填空题(每小题5分,共10分)7.某城市的电话号码,由七位升为八位(首位数字均不为零),则该城市可增加的电话部数是.【解析】电话号码是七位数字时,该城市可安装电话9106部,同理升为八位时为9107.所以可增加的电话部数是9107-9106=81106=8.1107.答案:8.11078.用0,1,2,3,4,5六个数字,可以组成没有重复数字的三位数的个数是;可以组成有重复数字的三位数的个数为.【解析】百位的数字可以选择的种数为5种,十位,个位可以选的种数分别为5种,4种,则可组成无重复数字的三位数的种数为554=100;可组成有重复数字的三位

6、数的种数为566=180.答案:100180三、解答题(每小题10分,共20分)9.有一项活动,需从3位老师、8名男同学和5名女同学中选人参加.(1)若只需1人参加,则有多少种不同的选法?(2)若需老师、男同学、女同学各1人参加,则有多少种不同的选法?(3)若需1位老师、1名同学参加,则有多少种不同的选法?【解析】(1)选1人,可分三类:第一类,从老师中选1人,有3种不同的选法;第二类,从男同学中选1人,有8种不同的选法;第三类,从女同学中选1人,有5种不同的选法.共有3+8+5=16种不同的选法.(2)选老师、男同学、女同学各1人,则分三步进行:第一步,选老师,有3种不同的选法;第二步,选男

7、同学,有8种不同的选法;第三步,选女同学,有5种不同的选法.共有385=120种不同的选法.(3)选1位老师、1名同学,可分两步进行:第一步,选老师,有3种不同的选法;第二步,选同学,有8+5=13种不同的选法.共有313=39种不同的选法.10.用n种不同颜色为下列两块广告牌着色(如图甲、乙),要求在,四个区域中相邻(有公共边界)的区域不用同一种颜色.(1)若n=6,则为甲着色时共有多少种不同方法?(2)若为乙着色时共有120种不同方法,求n.【解析】完成着色这件事,共分四个步骤,可依次考虑为,着色时各自的方法数,再由分步乘法计数原理确定总的着色方法数.(1)为着色有6种方法,为着色有5种方

8、法,为着色有4种方法,为着色也有4种方法.所以共有着色方法6544=480(种).(2)与(1)的区别在于与相邻的区域由两块变成了三块,同理,不同的着色方法数是n(n-1)(n-2)(n-3),由n(n-1)(n-2)(n-3)=120,得(n2-3n)(n2-3n+2)-120=0,即(n2-3n)2+2(n2-3n)-1210=0.所以n2-3n-10=0(不合题意的,舍去),所以n=5(负值舍去).(35分钟70分)一、选择题(每小题5分,共20分)1.由0,1,2,3,5组成的无重复数字的五位偶数共有()A.36个B.42个C.48个D.120个【解析】选B.分两类:(1)若五位数的个

9、位数是0,则有n1=4321=24种情形;(2)若五位数的个位数是2,由于0不排首位,因此只有1,3,5这3种情形,中间的三个位置有321=6种情形,依据分步乘法计数原理可得n2=36=18种情形.由分类加法计数原理可得所有无重复五位偶数的个数为n=n1+n2=24+18=42.2.用a代表红球,b代表蓝球,c代表黑球,由分类加法计数原理及分步乘法计数原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无

10、区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)【解析】选A.因为无区别,所以取红球的方法数为1+a+a2+a3+a4+a5;因为蓝球要都取出,或都不取出,所以方法为1+b5,因为黑球有区别,因此,取黑球的方法数为(1+c)5,所以所有取法数为(1+a+a2+a3+a4+a5)(1+b5)(1

11、+c)5.3.用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有()A.4 320种B.2 880种C.1 440种D.720种【解析】选A.分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有654334=4 320种不同的涂色方法.4.三位数中,如果百位数字、十位数字、个位数字刚好能构成等差数列,则称为“等差三位数”,例如:147,642,777,420等.等差三位数的总个数为()A.32B.36C.40

12、D.45【解析】选D.由题意得若百位数字、十位数字、个位数字构成公差为0的“等差三位数”,则只要各位数字不为零即可,有9个;若百位数字、十位数字个位数字构成公差为1的“等差三位数”,则百位数字不大于7,有7个;若百位数字、十位数字、个位数字构成公差为2的“等差三位数”,则百位数字不大于5,有5个;若百位数字、十位数字、个位数字构成公差为3的“等差三位数”,则百位数字不大于3,有3个;若百位数字、十位数字、个位数字构成公差为4的“等差三位数”,则百位数字只能为1,有1个;若百位数字、十位数字、个位数字构成公差为-1的“等差三位数,则百位数字不小于2,有8个;若百位数字、十位数字、个位数字构成公差

13、为-2的“等差三位数”,则百位数字不小于4,有6个;若百位数字、十位数字、个位数字构成公差为-3的“等差三位数”,则百位数字不小于6,有4个;若百位数字、十位数字、个位数字构成公差为-4的“等差三位数”,则百位数字不小于8,有2个.综上所述,“等差三位数”的总数为9+7+5+3+1+8+6+4+2=45个.二、填空题(每小题5分,共20分)5.五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案有种.【解析】完成承建任务可分五步:第一步,安排1号有4种;第二步,安排2号有4种;第三步,安排3号有3种;第四步,安排4号有2种;第五步,安排

14、5号有1种.由分步乘法计数原理知,共有44321=96(种).答案:966.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有种.【解析】先选出坐对位置的人,即从5人中选1人,有5种可能;剩下四人进行错排,设四人座位为1,2,3,4,则四人都不坐在自己位置上有2143,2341,2413,3142,3412,3421,4123,4312,4321这9种可能;所以恰有一人坐对与自己车票相符座位的坐法有59=45种.答案:457.(创新型)若m,n均为非负整数,在做

15、m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是.【解析】第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为21053=300.答案:3008.x+y+z=10的正整数解的组数为

16、.【解析】可按x的值分类:当x=1时,y+z=9,共有8组;当x=2时,y+z=8,共有7组;当x=3时,y+z=7,共有6组;当x=4时,y+z=6,共有5组;当x=5时,y+z=5,共有4组;当x=6时,y+x=4,共有3组;当x=7时,y+z=3,共有2组;当x=8时,y+z=2,共有1组.由分类加法计数原理可知:共有8+7+6+5+4+3+2+1=36(组).答案:36三、解答题(每小题10分,共30分)9.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人

17、中各选1人去献血,有多少种不同的选法?【解析】从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28793=5 292种不同的选法.10.已知集合M=-3,-2,-1,0,1,2,若a,b,cM,则:(1)y=ax2+

18、bx+c可以表示多少个不同的二次函数?(2)y=ax2+bx+c可以表示多少个图像开口向上的二次函数?【解析】(1)y=ax2+bx+c表示二次函数时,a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示566=180个不同的二次函数.(2)当y=ax2+bx+c的图像开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示266=72个图像开口向上的二次函数.11.现有高三四个班的学生共34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(

19、2)每班选一名组长,有多少种不同的选法?(3)推选二人作发言,这二人需来自不同的班级,有多少种不同的选法?【解析】(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步:第一、二、三、四步分别为从一、二、三、四班的学生中选一人任组长,所以共有不同的选法N=78910=5 040(种).(3)分六类:每类又分两步,从一、二班的学生中各选1人,有78种不同的选法;从一、三班的学生中各选1人,有79种不同的选法;从一、四班的学生中各选1人,有710种不同的选法;从二、三班的学生中各选1人,有89种不同的选法;从二、四班的学生中各选1人,有810种不同的选法;从三、四班的学生中各选1人,有910种不同的选法.所以共有不同的选法N=78+79+710+89+810+910=431(种).关闭Word文档返回原板块

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3