收藏 分享(赏)

2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc

上传人:高**** 文档编号:105304 上传时间:2024-05-25 格式:DOC 页数:19 大小:1.05MB
下载 相关 举报
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第1页
第1页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第2页
第2页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第3页
第3页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第4页
第4页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第5页
第5页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第6页
第6页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第7页
第7页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第8页
第8页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第9页
第9页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第10页
第10页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第11页
第11页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第12页
第12页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第13页
第13页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第14页
第14页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第15页
第15页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第16页
第16页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第17页
第17页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第18页
第18页 / 共19页
2011年高考试题分类汇编数学(理科)之专题_概率(WORD解析版).doc_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2011年高考试题数学(理科)概率一、选择题:1.(2011年高考浙江卷理科9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率(A) (B) (C) (D ) 【答案】B 【解析】由古典概型的概率公式得.2. (2011年高考辽宁卷理科5)从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(BA)=(A) (B) (C) (D)3. (2011年高考全国新课标卷理科4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则

2、这两位同学参加同一个兴趣小组的概率为(A) (B) (C) (D)解析:因为甲乙两位同学参加同一个小组有3种方法,两位同学个参加一个小组共有种方法;所以,甲乙两位同学参加同一个小组的概率为点评:本题考查排列组合、概率的概念及其运算和分析问题、解决问题的能力。【解析】D.由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率所以选D.5(2011年高考湖北卷理科7)如图,用K、A1、A2三类不同的元件连成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作.已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为A.0.960

3、B.0.864C.0.720D.0.576答案:B解析:系统正常工作概率为,所以选B.6(2011年高考陕西卷理科10)甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 (A) (B) (C) (D)【答案】D【解析】:各自独立地从1到6号景点中任选4个进行游览有种,且等可能,最后一小时他们同在一个景点有种,则最后一小时他们同在一个景点的概率是,故选D7. (2011年高考四川卷理科12)在集合中任取一个偶数和一个奇数构成以原点为起点的向量a=(a,b).从所有得到的以原点为起点的向量中任取两个

4、向量为邻边作平行四边形.记所有作成的平行四边形的个数为,其中面积不超过的平行四边形的个数为,则( )(A) (B) (C) (D)答案:B解析:基本事件:.其中面积为2的平行四边形的个数;其中面积为4的平行四边形的为; m=3+2=5故. 8(2011年高考福建卷理科4)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率等于A B C D【答案】C二、填空题:1.(2011年高考浙江卷理科15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率为,且三个公司是否让其

5、面试是相互独立的。记为该毕业生得到面试得公司个数。若,则随机变量的数学期望 【答案】【解析】:,的取值为0,1,2,3,故2. (2011年高考江西卷理科12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为 【答案】【解析】小波周末不在家看书包含两种情况:一是去看电影;二是去打篮球;所以小波周末不在家看书的概率为.3. (2011年高考湖南卷理科15)如图4,EFGH是以O为圆心,半径为1的圆内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方

6、形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1) ;(2) .答案:; 解析:(1)是几何概型:;(2)是条件概率:.评析:本小题主要考查几何概型与条件概率的计算.4. (2011年高考湖北卷理科12)在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期的概率为 (结果用最简分数表示)答案: 解析:因为30瓶饮料中未过期饮料有30-3=27瓶,故其概率为.5.(2011年高考重庆卷理科13)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为 解析: 。硬币投掷6次,有三类情况,正面次数比反面次数多;反面次数比正面次数多

7、;正面次数而后反面次数一样多;,概率为,的概率显然相同,故的概率为6.(2011年高考安徽卷江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_【答案】【解析】从1,2,3,4这四个数中一次随机取两个数,所有可能的取法有6种, 满足“其中一个数是另一个的两倍”的所有可能的结果有(1,2),(2,4)共2种取法,所以其中一个数是另一个的两倍的概率是.7(2011年高考福建卷理科13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_。【答案】8(2011年高考上海卷理科9)马老师从课本上抄

8、录一个随机变量的概率分布律如下表请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。据此,小牛给出了正确答案 。【答案】9(2011年高考上海卷理科12)随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到)。【答案】三、解答题:1. (2011年高考山东卷理科18)(本小题满分12分)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。()求红队至少两名队员获胜的概率;()用表示红队队

9、员获胜的总盘数,求的分布列和数学期望.【解析】()红队至少两名队员获胜的概率为=0.55.()取的可能结果为0,1,2,3,则=0.1;+=0.35;=0.4;=0.15.所以的分布列为0123P0.10.350.40.15数学期望=00.1+10.35+20.4+30.15=1.6.2. (2011年高考辽宁卷理科19)(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记

10、为X,求X的分布列和数学期望;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x1,x2,xa的样本方差,其中为样本平均数.(I)X可能的取值为0,1,2,3,4,且即X的分布列为X01234PX的数学期望是:.(II)品种甲的每公顷产量的样本平均数和样本方差分别为: 8分品种乙的每公顷产量的样本平均数和样本方差分别为: 10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不

11、大,故应该选择种植品种乙.3.(2011年高考安徽卷理科20)(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.()如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?()若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和

12、均值(数字期望);()假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。【命题意图】:本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列,均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类讨论思想,应用意识与创新意识。【解析】:()无论怎样的顺序派出人员,任务不能被完成的概率都是,所以任务能被完成的概率为=()当依次派出的三个人各自完成任务的概率分别为时,所需派出人员数目的分布列为123P所需派出人员数目的均值(数字期望)是()(方法一)由(2)的结论知,当一甲最先、乙次之、丙最后的顺序派人时,=,依据常理,

13、优先派出完成任务概率最大的人,可减少派出人员数目的均值.下面证明:对与,的任意排列,都有.事实上,=0,即成立.(方法二):可将()中所求的改写为,若交换前两人的派出顺序,则变为,可见,当时,交换前两人的派出顺序可减少均值;也可将()中所求的改写为,交换后两人的派出顺序,则变为,由此可见,若保持派出的人选不变,当时,交换后两人的派出顺序也可减少均值.综合可知,当(,)=(,)时,达到最小,即完成任务概率最大的人优先派出,可减少所需派出人员数目的均值,这一结论是合乎常理的.【解题指导】:当问题的情境很复杂时,静下心来读懂题意是第一要务,在读懂题意的前提下抽象概括出数学模型。第三问需用合情推理与演

14、绎推理相结合的办法解决,同时运用分类讨论思想,难度非常大。但这一问很好地体现了考试说明的要求“能从大量数据中抽取对研究问题有用的信息,并作出判断。”“创新意识是理性思维的高层次表现,对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强。”4. (2011年高考全国新课标卷理科19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值

15、,得到下面试验结果: A配方的频数分布表指标值分组频数82042228 B配方的频数分布表指标值分组频数41242328()分别估计用A配方,B配方生产的产品的优质品率;()已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为 从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)解析:()由试验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3。由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率

16、的估计值为0.42()用B配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,,054,0.42,因此X的可能值为-2,2,4 P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42,X-224P0.040.540.42即X的分布列为X的数学期望值EX=-20.04+20.54+40.42=2.685. (2011年高考天津卷理科16)(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结

17、束后将球放回原箱)()求在一次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;()求在两次游戏中获奖次数的分布列及数学期望.【解析】本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力.()(i)设“在一次游戏中摸出i个白球”为事件,则.(ii)设“在一次游戏中获奖”为事件B,则B=,又,且互斥,所以.()由题意可知的所有可能取值为0,1,2,P(=0)=,P(=1)=,P(=2) =,所以的分布列是012P的数学期望=+=.6(2011年高考江西卷理科16)(本小题满分12分)某饮料公司招聘了一名员工

18、,现对其进行一项测试,以便确定工资级别公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力 (1)求X的分布列; (2)求此员工月工资的期望解析:(1)X的所有可能取值为0,1,2,3,4,则,所以所求的分布列为X01234P(2)设Y表示该员工的月工资,则Y的所有可能取值为3500,2800,2100,相对的概率分别为,所以所以此员工工资

19、的期望为2280元本题考查排列、组合的基础知识及概率分布、数学期望7. (2011年高考湖南卷理科18)(本小题满分12分)某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变).设某天开始营业时由该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.求当天商店不进货的概率;记为第二天开始营业时该商品视为件数,求的分布列和数学期望.解:=+由题意知,的可能取值为2,3.+故的分布列为所以的数学期望为.评析:本大题主要考查生活中的概率统计知识和方法.求离散型随机变量的分布列和数

20、学期望的方法,以及互斥事件概率的求法.8. (2011年高考广东卷理科17)(本小题满分13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;(2)当产品中的微量元素x,y满足175且y75,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).【解析】解:(1),即乙厂生产的产品数量为35件。 (2)易见只

21、有编号为2,5的产品为优等品,所以乙厂生产的产品中的优等品故乙厂生产有大约(件)优等品, (3)的取值为0,1,2。所以的分布列为012P故9.(2011年高考陕西卷理科20)(本小题满分13分)如图,A地到火车站共有两条路径 和 ,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟) 的频率0.10.20.30.20.2 的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。()为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?()用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对()的选择方

22、案,求X的分布列和数学期望。【解析】:() 表示事件“甲选择路径时,40分钟内赶到火车站”, 表示事件“乙选择路径时,50分钟内赶到火车站”, 用频率估计相应的概率可得,。甲应选择,乙应选择()A、B分别表示针对()的选择方案,甲、乙在各自允许的时间内赶到火车站,由()知 又由题意知,A,B独立, X的分布列为X012P0.040.420.54来源:学_科_网10.(2011年高考重庆卷理科17)(本小题满分13分。()小问5分()小问8分.)某市公租房房屋位于A.B.C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:()若有2人申

23、请A片区房屋的概率;()申请的房屋在片区的个数的分布列与期望。解析:()所有可能的申请方式有种,恰有2人申请A片区房源的申请方式有种,从而恰有2人申请A片区房源的概率为 ()的所有可能值为1,2,3.又,综上知,的分布列为: 1 2 3 从而有11.(2011年高考四川卷理科18)本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。有人独立来该租车点则车骑游。各租一车一次。设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。

24、()求出甲、乙所付租车费用相同的概率;()求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;解析:(1)所付费用相同即为元。设付0元为,付2元为,付4元为则所付费用相同的概率为(2)设甲,乙两个所付的费用之和为,可为分布列.12. (2011年高考全国卷理科18) (本小题满分12分)(注意:在试题卷上作答无效) 根据以往统计资料,某地车主购买甲种保险的概率为05,购买乙种保险但不购买甲种保险的概率为03,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;()X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求的期望。 【解析】:设该车主

25、购买乙种保险的概率为,由题:,解得()设所求概率为,则故该地1位车主至少购买甲、乙两种保险中的l种的概率为0.8.() 甲乙两种保险都不购买的概率为1-0.8=0.2.设甲乙两种保险都不购买的车主数为,则B(100,0.2),答:该地1位车主至少购买甲、乙两种保险中的l种的概率为0.8, 的期望值是20。13(2011年高考北京卷理科17)本小题共13分以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。()如果X=8,求乙组同学植树棵树的平均数和方差;()如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期

26、望。(注:方差,其中为, 的平均数)【命题意图】本题考查运用茎叶图给出统计数据求平均值和方差、利用统计数据求概率和随机变量的分布和期望的计算,考查数据处理能力和运算求解能力,是中档题.【解析】(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为方差为()当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。分别从甲、乙两组中随机选取一名同学,共有44=16种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事

27、件有2种可能的结果,因此P(Y=17)=同理可得所以随机变量Y的分布列为:Y1718192021PEY=17P(Y=17)+18P(Y=18)+19P(Y=19)+20P(Y=20)+21P(Y=21)=17+18+19+20+21=1914(2011年高考福建卷理科19)(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,8,其中X5为标准A,X为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准(I)已知甲厂产品的等级系数X1的概率分布列如下所示:5678P04a

28、b01且X1的数字期望EX1=6,求a,b的值;(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 38 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望 (III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由注:(1)产品的“性价比”=; (2)“性价比”大的产品更具可购买性解析:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。解:(I)因为又由X1的概率分布列得由(II)由已知得,样本的频率分布表如下:345678030202010101用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X2的概率分布列如下:345678P030202010101所以即乙厂产品的等级系数的数学期望等于4.8.(III)乙厂的产品更具可购买性,理由如下:因为甲厂产品的等级系数的期望数学等于6,价格为6元/件,所以其性价比为因为乙厂产吕的等级系数的期望等于4.8,价格为4元/件,所以其性价比为据此,乙厂的产品更具可购买性。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3