ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:82.45KB ,
资源ID:1050997      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1050997-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版数学(理)新攻略总复习课标通用练习:第九章 -第七节 抛物线 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020版数学(理)新攻略总复习课标通用练习:第九章 -第七节 抛物线 WORD版含解析.docx

1、第七节抛物线A组基础题组1.设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为() A.x=-1B.x=-2C.x=-3D.x=-4答案D因为抛物线y2=2px的焦点p2,0在2x+3y-8=0上,所以p=8,所以抛物线的准线方程为x=-4,故选D.2.过点F(0,3)且和直线y+3=0相切的动圆圆心的轨迹方程为()A.y2=12xB.y2=-12xC.x2=-12yD.x2=12y答案D由抛物线的定义知,过点F(0,3)且和直线y+3=0相切的动圆圆心的轨迹是以点F(0,3)为焦点,直线y=-3为准线的抛物线,故其方程为x2=12y.3.已知抛物线C1:x2=2py

2、(p0)的准线与抛物线C2:x2=-2py(p0)交于A,B两点,C1的焦点为F,若FAB的面积等于1,则C1的方程是()A.x2=2yB.x2=2yC.x2=yD.x2=22y答案A由题意得F0,p2,不妨设Ap,-p2,B-p,-p2,SFAB=122pp=1,则p=1,即抛物线C1的方程是x2=2y,故选A.4.(2018四川成都检测)已知抛物线C:y2=4x的焦点为F,点A(0,-3).若线段FA与抛物线C相交于点M,则|MF|=()A.43B.53C.23D.33答案A如图.由题意得F(1,0),|AF|=2,设|MF|=d,则M到准线的距离为d,M的横坐标为d-1,由AMNAFO,

3、可得d-11=2-d2,所以d=43,故选A.5.已知点A(0,2),抛物线C1:y2=ax(a0)的焦点为F,射线FA与抛物线C相交于点M,与其准线方程交于点N.若|FM|MN|=15,则a的值为()A.14B.12C.1D.4答案D依题意,点F的坐标为a4,0,设点M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,|KM|MN|=15,则|KN|KM|=21.kFN=0-2a4-0=-8a,kFN=-|KN|KM|=-2,8a=2,解得a=4.6.抛物线的顶点在坐标原点,开口向上,其准线经过双曲线y24-x29=1的一个顶点,则此抛物线的标准方程为.答案x2=8y解析由题意可设抛物

4、线的标准方程为x2=2py(p0),因为双曲线的下顶点为(0,-2),所以-p2=-2,p=4,抛物线的标准方程为x2=8y.7.(2018沈阳质量检测)已知正三角形AOB(O为坐标原点)的顶点A,B在抛物线y2=3x上,则AOB的边长是.答案63解析如图,设AOB的边长为a,则A32a,12a,点A在抛物线y2=3x上,14a2=332a,a=63.8.(2018河南新乡二模)已知A(1,y1),B(9,y2)是抛物线y2=2px(p0)上的两点,y2y10,点F是抛物线的焦点,若|BF|=5|AF|,则y12+y2的值为.答案10解析由抛物线的定义可知,9+p2=51+p2,解得p=2,抛

5、物线的方程为y2=4x,又A,B两点在抛物线上,y1=2,y2=6,y12+y2=22+6=10.9.已知抛物线y2=2px(p0)的焦点为F,A是抛物线上一点,横坐标为4,且位于x轴上方,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过M作MNFA,垂足为N,求点N的坐标.解析(1)抛物线y2=2px的准线为x=-p2,于是4+p2=5,p=2,抛物线的方程为y2=4x.(2)由(1)知点A的坐标是(4,4).由题意得B(0,4),M(0,2).又F(1,0),kFA=43.MNFA,kMN=-34,直线FA的方程为y=43(x-1

6、),直线MN的方程为y=-34x+2,由联立得x=85,y=45,N的坐标为85,45.10.已知抛物线C:y2=2px(p0)的焦点为F,抛物线C与直线l1:y=-x的一个交点的横坐标为8.(1)求抛物线C的方程;(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A,B,若线段AB的中点为P,且|OP|=|PB|,求FAB的面积.解析(1)易知直线与抛物线的一个交点的坐标为(8,-8),(-8)2=2p8,2p=8,抛物线C的方程为y2=8x.(2)直线l2与l1垂直,故可设直线l2:x=y+m(m0),A(x1,y1),B(x2,y2),且直线l2与x轴的交点为M.由y2=8x,

7、x=y+m,得y2-8y-8m=0,=64+32m0,m-2.y1+y2=8,y1y2=-8m,x1x2=y12y2264=m2,由题意可知OAOB,x1x2+y1y2=m2-8m=0,m=8或m=0(舍),直线l2:x=y+8,M(8,0).故SFAB=SFMB+SFMA=12|FM|y1-y2|=3(y1+y2)2-4y1y2=245.B组提升题组1.(2018湖北武汉调研,6)已知不过原点O的直线交抛物线y2=2px(p0)于A,B两点,若OA,AB的斜率分别为2,6,则OB的斜率为() A.3 B.2C.-2D.-3答案D由题意可知,直线OA的方程为y=2x,与抛物线方程y2=2px联

8、立得y=2x,y2=2px,得x=p2,y=p,即Ap2,p,则直线AB的方程为y-p=6x-p2,即y=6x-2p,由y=6x-2p,y2=2px,得x=2p9,y=-2p3或x=p2,y=p,所以B2p9,-2p3,所以直线OB的斜率kOB=-2p32p9=-3.故选D.2.(2018福州质量检测)过抛物线C:y2=2px(p0)的焦点F的直线交C于A,B两点,若|AF|=3|BF|=3,则p=()A.3 B.2C.32 D.1答案C解法一:如图,分别过点A,B作准线l的垂线AA1,BB1,垂足分别为A1,B1,过点B作BDAA1于D,BD交x轴于E.由已知条件及抛物线定义得,|BB1|=

9、|BF|=1,|AA1|=|AF|=3,所以|AD|=3-1=2.在RtABD中,因为|AB|=4,|AD|=2,所以ABD=30,所以|EF|=12|BF|=12,所以焦点F到准线的距离为12+1=32,即p=32.故选C.解法二:依题意,直线AB不与x轴垂直,设直线AB的方程为y=kx-p2,将其代入抛物线C的方程y2=2px得k2x2-p(k2+2)x+k2p24=0,设A(x1,y1),B(x2,y2),则x1x2=p24.因为|AF|=3|BF|=3,所以x1+p2=3x2+p2=3,即x1=3-p2,x2=1-p2,所以3-p21-p2=p24,解得p=32.故选C.3.在平面直角

10、坐标系xOy中,抛物线y2=2px(p0)的焦点为F,点A(4,m)在抛物线上,且|AF|=5.(1)求抛物线的标准方程;(2)是否存在直线l,使l过点(0,1),并与抛物线交于B,C两点,且满足OBOC=0?若存在,求出直线l的方程;若不存在,说明理由.解析(1)点A(4,m)在抛物线上,且|AF|=5,4+p2=5,p=2,抛物线的标准方程为y2=4x.(2)存在.理由:由题意可设直线l的方程为x=k(y-1)(k0),代入抛物线方程,整理得y2-4ky+4k=0,则=16k2-16k0k1,设B(x1,y1),C(x2,y2),则y1+y2=4k,y1y2=4k,由OBOC=0,得x1x

11、2+y1y2=0,所以(k2+1)y1y2-k2(y1+y2)+k2=0,则有(k2+1)4k-k24k+k2=0,解得k=-4或k=0(舍去),直线l存在,其方程为x+4y-4=0.4.过抛物线C:y2=4x的焦点F且斜率为k的直线l交抛物线C于A,B两点,且|AB|=8.(1)求直线l的方程;(2)若A关于x轴的对称点为D,抛物线的准线与x轴的交点为E,求证:B,D,E三点共线.解析(1)F的坐标为(1,0),则l的方程为y=k(x-1),代入抛物线方程y2=4x得k2x2-(2k2+4)x+k2=0,由题意知k0,且-(2k2+4)2-4k2k2=16(k2+1)0.设A(x1,y1),

12、B(x2,y2),x1+x2=2k2+4k2,x1x2=1,由抛物线的定义知|AB|=x1+x2+2=8,2k2+4k2=6,k2=1,即k=1,直线l的方程为y=(x-1).(2)证明:由抛物线的对称性知,D点的坐标为(x1,-y1),又E(-1,0),kEB-kED=y2x2+1-y1x1+1=y2(x1+1)+y1(x2+1)(x1+1)(x2+1),y2(x1+1)+y1(x2+1)=y2y124+1+y1y224+1=y1y24(y1+y2)+(y1+y2)=(y1+y2)y1y24+1.由(1)知x1x2=1,(y1y2)2=16x1x2=16,又y1与y2异号,y1y2=-4,即y1y24+1=0,kEB=kED,又ED与EB有公共点E,B,D,E三点共线.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3