1、一、选择题1在等差数列an中,若a4a6a8a10a12120,则2a10a12的值为()A20B22C24D28导学号35950427解析:选C.由a4a12a6a102a8,得5a8120,即a824.又a8a122a10,故2a10a12a824.故选C. 2等差数列an中,a23,a3a49,则a1a6的值为()A14B18C21D27导学号35950428解析:选A.等差数列an中,a23,a3a49,a2da22d9,得d1,a1a2d2,a6a24d7,a1a614.故选A.3设Sn为等差数列an的前n项和,若a11,a35,Sk2Sk36,则k的值为()A8B7C6D5导学号3
2、5950429解析:选A.设等差数列的公差为d,由等差数列的性质可得2da3a14,得d2,所以an12(n1)2n1.Sk2Skak2ak12(k2)12(k1)14k436,解得k8.4在等差数列an中,a21,a45,则an的前5项和S5()A7B15C 20D25导学号35950430解析:选B.d2,a1a2d121,a5a23d167,故S515.故选B.5在等差数列an中,已知a3a810,则3a5a7等于()A17B18C19D20导学号35950431解析:选D.依题意,得2a19d10,所以3a5a73(a14d)a16d4a118d20.故选D.6已知等差数列an,bn的
3、前n项和分别为Sn,Tn,若,则()A.BC.D导学号35950432解析:选B.故选B.二、填空题7在等差数列an中,公差d,前100项的和S10045,则a1a3a5a99_导学号35950433解析:S100(a1a100)45,a1a1000.9,a1a99a1a100d0.4,则a1a3a5a99(a1a99)0.410.答案:108在等差数列an中,a17,公差为d,前n项和为Sn,当且仅当n8时,Sn取得最大值,则d的取值范围为_导学号35950434解析:由题意知d0且即解得1db1b2,b3b4b51,于是bn中最大项为b33,最小项为b21.12设数列an的前n项和为Sn,a11,an2(n1)(n1,2,3,)(1)求证:数列an为等差数列,并分别写出an和Sn关于n的表达式;(2)设数列的前n项和为Tn,证明:Tn.导学号35950438解:(1)由an2(n1),得Snnan2n(n1),当n2时,anSnSn1nan(n1)an14(n1),得anan14(n2,3,4,)数列an是以a11为首项,4为公差的等差数列,an4n3,Sn(a1an)n2n2n.(2)证明:Tn,又Tn单调递增,故TnT1,Tn.