1、第3讲空间点、直线、平面之间的位置关系基础巩固题组(建议用时:40分钟)一、选择题1(2013江西七校联考)已知直线a和平面,l,a,a,且a在,内的射影分别为直线b和c,则直线b和c的位置关系是()A相交或平行B相交或异面C平行或异面D相交、平行或异面解析依题意,直线b和c的位置关系可能是相交、平行或异面,选D.答案D2在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A相交B异面C平行D垂直解析如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF平面A1BCD1,且两直线不平行,故两直线相交答案A3设P表示一个点,a,b表示两条直线,表
2、示两个平面,给出下列四个命题,其中正确的命题是()Pa,Pa;abP,ba;ab,a,Pb,Pb;b,P,PPb.ABCD解析当aP时,Pa,P,但a,错;aP时,错;如图,ab,Pb,Pa,由直线a与点P确定唯一平面,又ab,由a与b确定唯一平面,但经过直线a与点P,与重合,b,故正确;两个平面的公共点必在其交线上,故正确答案D4(2013山西重点中学联考)已知l,m,n是空间中的三条直线,命题p:若ml,nl,则mn;命题q:若直线l,m,n两两相交,则直线l,m,n共面,则下列命题为真命题的是()ApqBpqCp(綈q)D(綈p)q解析命题p中,m,n可能平行、还可能相交或异面,所以命题
3、p为假命题;命题q中,当三条直线交于三个不同的点时,三条直线一定共面,当三条直线交于一点时,三条直线不一定共面,所以命题q也为假命题所以綈p和綈q都为真命题,故p(綈q)为真命题选C.答案C5.如图,在正方体ABCDA1B1C1D1中,过顶点A1与正方体其他顶点的连线与直线BC1成60角的条数为()A1B2C3D4解析有2条:A1B和A1C1.答案B二、填空题6如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线_对解析如图所示,与AB异面的直线有B1C1,CC1,A1D1,DD1四条,因为各棱具有不同的位置,且正方体共有12条棱,排除两棱的重复计算,共有异面直线24(对)答案2
4、47.如图,在正方体ABCDA1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线AM与DD1是异面直线其中正确的结论为_(注:把你认为正确的结论的序号都填上)解析A,M,C1三点共面,且在平面AD1C1B中,但C平面AD1C1B,因此直线AM与CC1是异面直线,同理AM与BN也是异面直线,AM与DD1也是异面直线,错,正确;M,B,B1三点共面,且在平面MBB1中,但N平面MBB1,因此直线BN与MB1是异面直线,正确答案8(2013江西卷)如图,正方体的底面与正四面体的底面在同一平面上
5、,且ABCD,则直线EF与正方体的六个面所在的平面相交的平面个数为_解析取CD的中点为G,由题意知平面EFG与正方体的左、右侧面所在平面重合或平行,从而EF与正方体的左、右侧面所在的平面平行或EF在平面内所以直线EF与正方体的前、后侧面及上、下底面所在平面相交故直线EF与正方体的六个面所在的平面相交的平面个数为4.答案4三、解答题9. 如图,四边形ABEF和ABCD都是直角梯形,BAD FAB90,BC綉AD,BE綉FA,G,H分别 为 FA,FD的中点(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?(1)证明由已知FGGA,FHHD,可得GH綉AD.又BC綉
6、AD,GH綉BC,四边形BCHG为平行四边形(2)解由BE綉AF,G为FA中点知,BE綉FG,四边形BEFG为平行四边形,EFBG.由(1)知BG綉CH,EFCH,EF与CH共面又DFH,C,D,F,E四点共面10在正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,求证:点C1,O,M共线证明如图所示,A1AC1C,A1A,C1C确定平面A1C.A1C平面A1C,OA1C,O平面A1C,而O平面BDC1线A1C,O平面BDC1,O在平面BDC1与平面A1C的交线上ACBDM,M平面BDC1,且M平面A1C,平面BDC1平面A1CC1M,OC1M,即C1,
7、O,M三点共线能力提升题组(建议用时:25分钟)一、选择题1(2014长春一模)一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中()AABCDBAB与CD相交CABCDDAB与CD所成的角为60解析如图,把展开图中的各正方形按图1所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图2所示的直观图,可见选项A,B,C不正确正确选项为D.图2中,BECD,ABE为AB与CD所成的角,ABE为等边三角形,ABE60.答案D2在正方体ABCDA1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线()A不存在B
8、有且只有两条C有且只有三条D有无数条解析法一图1在EF上任意取一点M,直线A1D1与M确定一个平面(如图1),这个平面与CD有且仅有1个交点N,当M取不同的位置就确定不同的平面,从而与CD有不同的交点N,而直线MN与这3条异面直线都有交点如图所示故选D.法二在A1D1上任取一点P,过点P与直线EF作一个平面(如图2),因CD与平面不平行,图2所以它们相交,设它们交于点Q,连接PQ,则PQ与EF必然相交,即PQ为所求直线由点P的任意性,知有无数条直线与三条直线A1D1,EF,CD都相交答案D二、填空题3.(2013安徽卷)如图,正方体ABCDA1B1C1D1的棱长为1, P为BC的中点,Q为线段
9、CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_(写出所有正确命题的编号)当0CQ时,S为四边形;当CQ时,S为等腰梯形;当CQ时,S与C1D1的交点R满足C1R;当CQ1时,S为六边形;当CQ1时,S的面积为.解析如图1,当CQ时,平面APQ与平面ADD1A1的交线AD1必平行于PQ,且D1QAP,S为等腰梯形,正确;同理,当0CQ时,S为四边形,正确;图1图2如图2,当CQ时,将正方体ABCDA1B1C1D1补成底面不变,高为1.5的长方体ABCDA2B2C2D2.Q为CC2的中点,连接AD2交A1D1于点E,易知PQAD2,作ERAP,交C1D1于R,
10、连接RQ,则五边形APQRE为截面S.延长RQ,交DC的延长线于F,同时与AP的延长线也交于F,由P为BC的中点,PCAD,知CFDF1,由题意知RC1QFCQ,C1R,正确;由图2知当CQ1时,S为五边形,错误;当CQ1时,点Q与点C1重合,截面S为边长为的菱形,对角线AQ,另一条对角线为,S,正确答案三、解答题4如图,在正方体ABCDA1B1C1D1中,(1)求A1C1与B1C所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小解(1)如图,连接AC,AB1,由ABCDA1B1C1D1是正方体,知AA1C1C为平行四边形,所以ACA1C1,从而B1C与AC所成的角就是A1C1与B1C所成的角由AB1C中,由AB1ACB1C可知B1CA60,即A1C1与B1C所成角为60.(2)如图,连接BD,由(1)知ACA1C1.AC与EF所成的角就是A1C1与EF所成的角EF是ABD的中位线,EFBD.又ACBD,ACEF,即所求角为90.EFA1C1.即A1C1与EF所成的角为90.