ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:1.17MB ,
资源ID:105005      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-105005-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2011年高考试题分类汇编数学(理科)之专题_不等式(WORD解析版).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2011年高考试题分类汇编数学(理科)之专题_不等式(WORD解析版).doc

1、2011年高考试题数学(理科)不等式一、选择题:1. (2011年高考山东卷理科4)不等式的解集为(A)-5.7 (B)-4,6 (C) (D)【答案】D【解析】由不等式的几何意义知,式子表示数轴的点与点(5)的距离和与点(-3)的距离之和,其距离之和的最小值为8,结合数轴,选项D正确2. (2011年高考辽宁卷理科9)设函数,则满足的x的取值范围是(A),2 (B)0,2 (C)1,+) (D)0,+)答案:D3. (2011年高考辽宁卷理科11)函数的定义域为,对任意,则的解集为(A)(,1) (B)(,+) (C)(,)(D)(,+)答案:B4.(2011年高考浙江卷理科5)设实数满足不

2、等式组若为整数,则的最小值是(A)14 (B)16 (C)17 (D)19【答案】 B所以 即于是所以成立,充分条件; 反之成立,即则故,不必要条件。故选A6.(2011年高考安徽卷理科4)设变量满足则的最大值和最小值分别为(),(), (), (),来源:Z|xx|k.Com【答案】B【命题意图】本题考查线性规划问题.属容易题.【解析】不等式对应的区域如图所示,当目标函数过点(0,1),(0,1)时,分别取最小或最大值,所以的最大值和最小值分别为2,2.故选B.7. (2011年高考天津卷理科2)设则“且”是“”的 A. 充分而不必要条件 B必要而不充分条件C充分必要条件 D即不充分也不必要

3、条件【答案】A【解析】当时,一定有;反过来当,不一定有,例如也可以,故选Aoxyy=log2xy=log3xy=log4x8.(2011年高考天津卷理科7)已知则AB CD【答案】C【解析】令,在同一坐标系下作出三个函数的图象,由图象可得 ,9. (2011年高考天津卷理科8)对实数与,定义新运算“”: 设函数若函数的图像与轴恰有两个公共点,则实数的取值范围是( )A B C D.【答案】B【解析】 则的图象如图-1-2oxy的图象与轴恰有两个公共点,与的图象恰有两个公共点,由图象知,或.10. (2011年高考江西卷理科2)若集合,则= ( ) A. B. C. D. 答案:B 解析:11.

4、 (2011年高考江西卷理科3)若,则的定义域为 A. B. C. D.【答案】A【解析】要使原函数有意义,只须,即,解得,故选A.12. (2011年高考江西卷理科4)若,则的解集为 A. B. C. D. 【答案】C【解析】因为,原函数的定义域为,所以由可得,解得,故选C.13. (2011年高考湖南卷理科7)设在约束条件下,目标函数的最大值小于2,则的取值范围为 A. B. C. D. 答案:A解析:画出可行域,或分别解方程组,得到三个区域端点,当且仅当直线过点时,取到最大值,解得。故选A评析:本小题主要考查线性规划问题中,利用最值求参数的取值范围问题.14. (2011年高考广东卷理科

5、5)已知平面直角坐标系上的区域D由不等式组给定.若M(x,y)为D上动点,点A的坐标为(,1)则的最大值为( )A. B. C.4 D.3【解析】C.由题得不等式组对应的平面区域D是如图所示的直角梯形OABC,,所以就是求的最大值,表示数形结合观察得当点M在点B的地方时,才最大。,所以,所以选择C 15(2011年高考湖北卷理科8)已知向量,且,若满足不等式,则z的取值范围为A.2,2B. 2,3C. 3,2D. 3,3答案:D解析:因为,故,即,可得,又因为,其图像为四条直线所围成的正方形面,由线性规划可计算得当时,取到,当,取到,所以选D.16(2011年高考湖北卷理科9)若实数满足,且,

6、则称与互补,记那么是与b互补的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件答案:C 解析:由,即,故,则,化简得,即ab=0,故且,则且,故选C.17.(2011年高考重庆卷理科2) “”是“”的(A)充分而不必要条件 (B)必要而不充分条件 (C) 充要条件 (D)既不充分也不必要条件解析:选A. ,故“”是“”的充分而不必要条件 18.(2011年高考重庆卷理科7)已知a0,b0,a+b=2,则的最小值是(A) (B)4(C) (D)5 解析:选C。因为a+b=2,所以19.(2011年高考重庆卷理科10)(10)设m,k为整数,方程在区间(0,1)内有两个

7、不同的根,则m+k的最小值为(A)-8 (B)8 (C)12 (D)13解析:选D. 设,则方程在区间(0,1)内有两个不同的根等价于,因为,所以,故抛物线开口向上,于是,令,则由,得,则,所以m至少为2,但,故k至少为5,又,所以m至少为3,又由,所以m至少为4,依次类推,发现当时,首次满足所有条件,故的最小值为1320. (2011年高考四川卷理科9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往地至少72吨的货物,派用的每辆车虚满载且只运送一次.拍用的每吨甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1

8、名工人,运送一次可得利润350元.该公司合理计划党团派用两类卡车的车辆数,可得最大利润( )(A)4650元 (B)4700元 (C)4900元 (D)5000元答案:C解析:由题意设派甲,乙辆,则利润,得约束条件画出可行域在的点代入目标函数21. (2011年高考全国卷理科3)下面四个条件中,使成立的充分而不必要的条件是(A) (B) (C) (D)【思路点拨】本题要把充要条件的概念搞清,注意寻找的是通过选项能推出ab,而由ab推不出选项的选项.【精讲精析】选A.即寻找命题P使P推不出P,逐项验证可选A。22(2011年高考北京卷理科6)根据统计,一名工作组装第x件某产品所用的时间(单位:分

9、钟)为 (A,C为常数)。已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么C和A的值分别是A75,25 B75,16 C60,25 D60,16【答案】D23(2011年高考北京卷理科8)设,, ,.记为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数的值域为A BC D【答案】C24(2011年高考福建卷理科8)已知O是坐标原点,点A(-1,1)若点M(x,y)为平面区域,上的一个动点,则的取值范围是A-10 B01 C02 D-12【答案】C25(2011年高考上海卷理科15)若,且,则下列不等式中,恒成立的是( )A B C

10、D【答案】D二、填空题:1.(2011年高考浙江卷理科16)设为实数,若则的最大值是 .。【答案】【解析】,o第13题图 ,故的最大值为2. (2011年高考全国新课标卷理科13)若变量满足约束条件则的最小值为 。答案: -6 解析:如图可知最优解是(4,-5),所以,点评:本题考查线性规划问题,求最优解事先要准确画出线性区域是关键。3(2011年高考天津卷理科13)已知集合,则集合=_【答案】【解析】因为,所以,所以;由绝对值的几何意义可得:,所以=.4. (2011年高考湖南卷理科10)设,且,则的最小值为 .答案:9解析:由,且可知:,则(当且仅当时,取到等号)。故填9评析:本小题主要考

11、查不等式的性质和基本不等式求最值问题.5. (2011年高考广东卷理科9)不等式的解集是_.【解析】。由题得 所以不等式的解集为。6.(2011年高考安徽卷江苏8)在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是_【答案】4【解析】设坐标原点的直线方程为,则由解得交点坐标为、,即为P、Q两点,所以线段PQ长为,当且仅当时等号成立,故线段PQ长的最小值是4.7(2011年高考上海卷理科4)不等式的解为 。【答案】或三、解答题:1.(2011年高考安徽卷理科19)(本小题满分12分)()设证明,(),证明.【命题意图】本题考查不等式的基本性质,对数函数的性

12、质和对数换底公式等基本知识,考查代数的恒等变形能力和推理论证能力.【解析】()1,1,=0,.()设=,=,则=,=,=,=,所要证明不等式即为,1,1,由()知所证明的不等式成立.【解题指导】:证明不等式常规的方法有分析法,综合法,作差法和作商法,无论哪种方法不等式性质和代数式恒定变形是处理这类问题的关键。第二问的处理很有艺术性,借助第一问题的结论巧妙地解决了,这也是一题多问的问题解决常规思路,前面的问题结论对后面问题解决常常有提示作用。2(2011年高考广东卷理科21)(本小题满分14分)在平面直角坐标系xOy上,给定抛物线L:实数p,q满足,x1,x2是方程的两根,记。(1)过点作L的切

13、线教y轴于点B证明:对线段AB上任一点Q(p,q)有(2)设M(a,b)是定点,其中a,b满足a2-4b0,a0过M(a,b)作L的两条切线,切点分别为,与y轴分别交与F,F。线段EF上异于两端点的点集记为X证明:M(a,b) X;(3)设D= (x,y)|yx-1,y(x+1)2-当点(p,q)取遍D时,求的最小值 (记为)和最大值(记为)【解析】解:(1)证明:切线的方程为当当 (2)的方程分别为求得的坐标,由于,故有1)先证:()设当当()设当注意到2)次证: ()已知利用(1)有 ()设,断言必有若不然,令Y是上线段上异于两端点的点的集合,由已证的等价式1)再由(1)得,矛盾。故必有再

14、由等价式1),综上, (3)求得的交点而是的切点为的切线,且与轴交于,由()线段Q1Q2,有当在(0,2)上,令由于在0,2上取得最大值故,故3. (2011年高考湖北卷理科17)(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车速度为0;当车流密度不超过20辆/千米时,车流速度为60千米,/小时,研究表明:当时,车流速度v是车流密度的一次函数.()当时,求函数的表达式;()当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车

15、辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:()由题意:当时,;当时,设,显然在是减函数,由已知得,解得故函数的表达式为=()依题意并由()可得当时,为增函数,故当时,其最大值为;当时,当且仅当,即时,等号成立所以,当时,在区间上取得最大值综上,当时,在区间上取得最大值,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时4. (2011年高考湖北卷理科21)(本小题满分14分)()已知函数,求函数的最大值;()设均为正数,证明:(1)若,则;(2)若,则本题主要

16、考查函数、导数、不等式的证明等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及化归与转化的思想. 解析:()的定义域为,令,解得,当时,在(0,1)内是增函数;当时,在内是减函数;故函数在处取得最大值()(1)由()知,当时,有,即,从而有,得,求和得,即.(2)先证.令,则,于是由(1)得,即.再证.记,令,则,于是由(1)得.即,综合,(2)得证.5.(2011年高考全国卷理科22)(本小题满分12分)(注意:在试题卷上作答无效)()设函数,证明:当时,;()从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为.证明:【思路点拨】本题第(I)问是利用导数研究单调性最值的常规题,不难证明。第(II)问证明如何利用第(I)问结论是解决这个问题的关键也是解题能力高低的体现。【精讲精析】(I)所以在上单增。当时,。(II)由(I),当x0时,,即有故于是,即.利用推广的均值不等式:另解:,所以是上凸函数,于是因此,故综上:

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3