ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:511.50KB ,
资源ID:1049906      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1049906-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《走向高考》2016高考数学二轮复习微专题强化习题:13立体几何综合练习(文) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《走向高考》2016高考数学二轮复习微专题强化习题:13立体几何综合练习(文) WORD版含答案.doc

1、高考资源网() 您身边的高考专家第一部分一13(文) 一、选择题1(2015东北三校二模)设l,m是两条不同的直线,是一个平面,则下列说法正确的是()A若lm,m,则lB若l,lm,则mC若l,m,则lmD若l,m,则lm答案B解析当l、m是平面内的两条互相垂直的直线时,满足A的条件,故A错误;对于C,过l作平面与平面相交于直线l1,则ll1,在内作直线m与l1相交,满足C的条件,但l与m不平行,故C错误;对于D,设平面,在内取两条相交的直线l、m,满足D的条件,故D错误;对于B,由线面垂直的性质定理知B正确2已知、是三个不同的平面,命题“,且”是真命题,如果把、中的任意两个换成直线,另一个保

2、持不变,在所得的所有新命题中,真命题有()A0个 B1个C2个D3个答案C解析若、换成直线a、b,则命题化为“ab,且ab”,此命题为真命题;若、换为直线a、b,则命题化为“a,且abb”,此命题为假命题;若、换为直线a、b,则命题化为“a,且bab”,此命题为真命题,故选C.3(2015重庆文,5)某几何体的三视图如图所示,则该几何体的体积为()A.2 B.C. D.答案B解析由三视图可知该几何体是由一个圆柱和一个半圆锥组成,圆柱的底面半径为1,高为2;半圆锥的底面半径为1,高也为1,故其体积为122121;故选B.4.如图,在正四面体PABC中,D、E、F分别是AB、BC、CA的中点,下列

3、四个结论不成立的是()ABC平面PDFBDF平面PAEC平面PDF平面PAED平面PDE平面ABC答案D解析D、F分别为AB、AC的中点,BCDF,BC平面PDF,BC平面PDF,故A正确;在正四面体中,E为BC中点,易知BCPE,BCAE,BC平面PAE,DFBC,DF平面PAE,故B正确;DF平面PAE,DF平面PDF,平面PDF平面PAE,C正确,故选D.5若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于()A10 cm3B20 cm3C30 cm3D40 cm3答案B解析由三视图知该几何体是四棱锥,可视作直三棱柱ABCA1B1C1沿平面AB1C1截去一个三棱锥AA1B1C1余

4、下的部分VABCC1B1VABCA1B1C1VAA1B1C1435(43)520cm3.6如图,在棱长为5的正方体ABCDA1B1C1D1中,EF是棱AB上的一条线段,且EF2,Q是A1D1的中点,点P是棱C1D1上的动点,则四面体PQEF的体积()A是变量且有最大值B是变量且有最小值C是变量且有最大值和最小值D是常量答案D解析因为EF2,点Q到AB的距离为定值,所以QEF的面积为定值,设为S,又因为D1C1AB,所以D1C1平面QEF;点P到平面QEF的距离也为定值,设为d,从而四面体PQEF的体积为定值Sd.7(2015湖北文,5)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线

5、,q:l1,l2不相交,则()Ap是q的充分条件,但不是q的必要条件Bp是q的必要条件,但不是q的充分条件Cp是q的充分必要条件Dp既不是q的充分条件,也不是q的必要条件答案A解析若p:l1,l2是异面直线,由异面直线的定义知,l1,l2不相交,所以命题q:l1,l2不相交成立,即p是q的充分条件;反过来,若q:l1,l2不相交,则l1,l2可能平行,也可能异面,所以不能推出l1,l2是异面直线,即p不是q的必要条件,故应选A.8已知正方形ABCD的边长为2,将ABC沿对角线AC折起,使平面ABC平面ACD,得到如右图所示的三棱锥BACD.若O为AC边的中点,M、N分别为线段DC、BO上的动点

6、(不包括端点),且BNCM.设BNx,则三棱锥NAMC的体积yf(x)的函数图象大致是()答案B解析由条件知,AC4,BO2,SAMCCMADx,NO2x,VNAMCSAMCNOx(2x),即f(x)x(2x),故选B.二、填空题9(2015天津文,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为_m3.答案解析考查1.三视图;2.几何体的体积该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,圆柱与圆锥的底面半径都是1,所以该几何体的体积为212(m3)三、解答题10如图,已知AD平面ABC,CE平面ABC,F为BC的中点,若ABACADCE.(1)求证:AF平面BDE;

7、(2)求证:平面BDE平面BCE.证明(1)取BE的中点G,连接GF、GD.因为F是BC的中点,则GF为BCE的中位线所以GFEC,GFCE.因为AD平面ABC,CE平面ABC,所以GFECAD.又因为ADCE,所以GFAD.所以四边形GFAD为平行四边形所以AFDG.因为DG平面BDE,AF平面BDE,所以AF平面BDE.(2)因为ABAC,F为BC的中点,所以AFBC.因为ECGF,EC平面ABC,所以GF平面ABC.又AF平面ABC,所以GFAF.因为GFBCF,所以AF平面BCE.因为AFDG,所以DG平面BCE.又DG平面BDE,所以平面BDE平面BCE.11.底面为正多边形的直棱柱

8、称为正棱柱如图,在正三棱柱ABCA1B1C1中,AA1ABa,F、F1分别是AC、A1C1的中点(1)求证:平面AB1F1平面C1BF;(2)求证:平面AB1F1平面ACC1A1.分析(1)在正三棱柱中,由F、F1分别为AC、A1C1的中点,不难想到四边形AFC1F1与四边形BFF1B1都为平行四边形,于是要证平面AB1F1平面C1BF,可证明平面AB1F1与平面C1BF中有两条相交直线分别平行,即BFB1F1,FC1AF1.(2)要证两平面垂直,只要在一个平面内能够找到一条直线与另一个平面垂直,考虑到侧面ACC1A1与底面垂直,F1为A1C1的中点,则不难想到B1F1平面ACC1A1,而平面

9、AB1F1经过B1F1,因此可知结论成立解析(1)在正三棱柱ABCA1B1C1中,连FF1,F、F1分别是AC、A1C1的中点,B1B綊A1A綊FF1,B1BFF1为平行四边形B1F1BF,又AF綊C1F1,AF1C1F为平行四边形,AF1C1F,又B1F1与AF1是两相交直线,平面AB1F1平面C1BF.(2)在正三棱柱ABCA1B1C1中,AA1平面A1B1C1,B1F1AA1,又B1F1A1C1,A1C1AA1A1,B1F1平面ACC1A1,而平面AB1F1经过B1F1,平面AB1F1平面ACC1A1.12.在正方体ABCDA1B1C1D1中,点F、H分别为A1D、A1C的中点(1)证明

10、:A1B平面AFC;(2)证明:B1H平面AFC.分析分别利用线面平行的判定定理和线面垂直的判定定理证明解析(1)连BD交AC于点E,则E为BD的中点,连EF,又F为A1D的中点,所以EFA1B.又EF平面AFC,A1B平面AFC,A1B平面AFC.(2)连接B1C,在正方体中四边形A1B1CD为长方形,H为A1C的中点,H也是B1D的中点,只要证B1D平面ACF即可由正方体性质得ACBD,ACB1B,AC平面B1BD,ACB1D.又F为A1D的中点,AFA1D,又AFA1B1,AF平面A1B1D.AFB1D,又AF、AC为平面ACF内的相交直线B1D平面ACF.即B1H平面ACF.13.如图

11、,在四棱锥PABCD中,底面ABCD是DAB60,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG平面PAD;(2)求证:ADPB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF平面ABCD,并证明你的结论解析(1)证明:在菱形ABCD中,DAB60,G为AD的中点,得BGAD.又平面PAD平面ABCD,平面PAD平面ABCDAD,BG平面PAD.(2)证明:连接PG,因为PAD为正三角形,G为AD的中点,得PGAD.由(1)知BGAD,PGBGG,PG平面PGB,BG平面PGB,AD平面PGB.PB平面PGB,ADP

12、B.(3)解:当F为PC的中点时,满足平面DEF平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF,则在PBC中,FEPB,在菱形ABCD中,GBDE,ADEF,ADDE.AD平面DEF,又AD平面ABCD,平面DEF平面ABCD.14(2014河北名校名师俱乐部模拟)如图,在三棱柱ABCA1B1C1中,AA1平面ABC,ACBC,E在线段B1C1上,B1E3EC1,ACBCCC14.(1)求证:BC AC1;(2)试探究:在AC上是否存在点F,满足EF平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由分析(1)执果索因:要证BCAC1,已知BCAC,故只需证

13、BC平面ACC1A1,从而BCAA1,这由已知三棱柱中AA1平面ABC可证(2)假定存在,执果索因找思路:假定AC上存在点F,使EF平面A1ABB1,考虑矩形C1CBB1中,E在B1C1上,且B1E3EC1,因此取BC上点G,使BG3GC,则EGB1B,从而EG平面A1ABB1,因此平面EFG平面A1ABB1,由面面平行的性质定理知FGAB,从而3,则只需过G作AB的平行线交AC于F,F即所探求的点解析(1) AA1平面ABC, BC平面ABC,BCAA1.又BCAC,AA1,AC平面AA1C1C,AA1ACA,BC平面AA1C1C,又AC1平面AA1C1C,BCAC1.(2)解法一:当AF3

14、FC时,FE平面A1ABB1.理由如下:在平面A1B1C1内过E作EGA1C1交A1B1于G,连接AG.B1E3EC1,EGA1C1,又AFA1C1且AFA1C1,AFEG且AFEG,四边形AFEG为平行四边形,EFAG,又EF平面A1ABB1,AG平面A1ABB1,EF平面A1ABB1.解法二:当AF3FC时,FE平面A1ABB1.理由如下: 在平面BCC1B1内过E作EGBB1交BC于G,连接FG.EGBB1,EG平面A1ABB1,BB1平面A1ABB1,EG平面A1ABB1.B1E3EC1,BG3GC,FGAB,又AB平面A1ABB1,FG平面A1ABB1,FG平面A1ABB1.又EG平

15、面EFG,FG平面EFG,EGFGG,平面EFG平面A1ABB1.EF平面EFG,EF平面A1ABB1.15已知四棱锥PABCD的直观图和三视图如图所示,E是PB的中点(1)求三棱锥CPBD的体积;(2)若F是BC上任一点,求证:AEPF;(3)边PC上是否存在一点M,使DM平面EAC,并说明理由解析(1)由该四棱锥的三视图可知,四棱锥PABCD的底面是边长为2和1的矩形,侧棱PA平面ABCD,且PA2,VCPBDVPBCD122.(2)证明:BCAB,BCPA,ABPAA.BC平面PAB,BCAE,又在PAB中,PAAB,E是PB的中点,AEPB.又BCPBB,AE平面PBC,且PF平面PBC,AEPF.(3)存在点M,可以使DM平面EAC.连接BD,设ACBDO,连接EO.在PBD中,EO是中位线PDEO,又EO平面EAC,PD平面EAC,PD平面EAC,当点M与点P重合时,可以使DM平面EAC.- 9 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3