1、1.3 动量守恒定律在碰撞中的应用知识要点一、动量守恒定律1动量守恒定律的内容一个系统不受外力或者所受外力矢量和为零,这个系统的总动量保持不变。即: 2动量守恒定律成立的条件系统不受外力或者所受外力之和为零;系统受外力,但外力远小于内力,可以忽略不计;系统在某一个方向上所受的合外力为零,则该方向上动量守恒。3动量守恒定律的表达形式(1),即p1+p2=p1/+p2/,(2)p1+p2=0,p1= -p24、理解矢量性 同一性 普适性5应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象,通常把这些被研究的物体总称为系统.来源:学科网(2)要对各阶段所选系统内的物体进行受力分
2、析,弄清哪些是系统的内力,哪些是系统对物体的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。(3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式。注意:在研究地面上物体间相互作用的过程时,各物体的速度均应取地球为参考系。(4)确定好正方向建立动量守恒方程求解。二、动量守恒定律的应用1.动量守恒定律的判断1、把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射出子弹时,关于枪、子弹、车的下列说法正确的是( )A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.只有忽略不计子弹和枪筒之间的摩擦,枪、车和子弹组成的系
3、统的动量才近似守恒D.枪、子弹、车组成的系统动量守恒解:本题C选项中所提到的子弹和枪筒之间的摩擦是系统的内力,在考虑枪、子弹、车组成的系统时,这个因素是不用考虑的 根据受力分析,可知该系统所受合外力为0,符合动量守恒的条件,故选D 规律总结:判断系统是否动量守恒时,一定要抓住守恒条件,即系统不受外力或者所受合外力为0。变式:如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:( )A、动量守恒、机械能守恒B、动量不守恒、机械能不守恒C
4、、动量守恒、机械能不守恒D、动量不守恒、机械能守恒【解析】若以子弹、木块和弹簧合在一起作为研究对象(系统),从子弹开始射入木块到弹簧压缩至最短时,弹簧固定端墙壁对弹簧有外力作用,因此动量不守恒而在子弹射入木块时,存在剧烈摩擦作用,有一部分能量将转化为内能,机械能也不守恒答案:B实际上,在子弹射入木块这一瞬间过程,取子弹与木块为系统则可认为动量守恒(此瞬间弹簧尚未形变)子弹射入木块后木块压缩弹簧过程中,机械能守恒,但动量不守恒物理规律总是在一定条件得出的,因此在分析问题时,不但要弄清取谁作研究对象,还要弄清过程的阶段的选取,判断各阶段满足物理规律的条件2.碰撞中过程的分析2、如图所示,位于光滑水
5、平桌面上的小滑块A和B都可视作质点,质量相等。B与轻质弹簧相连。设B静止,A以某一初速度向B运动并与弹簧发生碰撞。在整个碰撞过程中,弹簧具有的最大弹性势能等于( )A. A的初动能B. A的初动能的1/2C. A的初动能的1/3D. A的初动能的1/4解: 解决这样的问题,最好的方法就是能够将两个物体作用的过程细化。具体分析如图:开始A物体向B运动,如上图;接着,A与弹簧接触,稍有作用,弹簧即有形变,分别对A、B物体产生如中图的作用力,对A的作用力的效果就是产生一个使A减速的加速度,对B的作用力的效果则是产生一个使B加速的加速度。如此,A在减速,B在加速,一起向右运动,但是在开始的时候,A的速
6、度依然比B的大,所以相同时间内,A走的位移依然比B大,故两者之间的距离依然在减小,弹簧不断压缩,弹簧产生的作用力越来越大,对A的加速作用和对B的加速作用而逐渐变大,于是,A的速度不断减小,B的速度不断增大,直到某个瞬间两个物体的速度一样,如下图。过了这个瞬间,由于弹簧的压缩状态没有发生任何变化,所以对两个物体的作用力以及力的效果也没有变,所以A要继续减速,B要继续加速,这就会使得B的速度变的比A大,于是A、B物体之间的距离开始变大。因此,两个物体之间的距离最小的时候,也就是弹簧压缩量最大的时候,也就是弹性势能最大的时候,也就是系统机械能损失最大的时候,就是两个物体速度相同的时候。根据动量守恒有
7、,根据能量守恒有,以上两式联列求解得,可见弹簧具有的最大弹性势能等于滑块A原来动能的一半,B正确 规律总结:处理带有弹簧的碰撞问题,认真分析运动的变化过程是关键,面对弹簧问题,一定要注重细节的分析,采取“慢镜头”的手段。3动量守恒定律的适用情景3、小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45角,求发射炮弹后小船后退的速度。解:发射炮弹前,总质量为1000kg的船静止,则总动量Mv=0发射炮弹后,炮弹在水平方向的动量为mv1cos45,船后退的动量为(M-m)v2据动量守恒定律有0=mv1cos45(M-m)v
8、2取炮弹的水平速度方向为正方向,代入已知数据解得规律总结:取炮弹和小船组成的系统为研究对象,在发射炮弹的过程中,炮弹和炮身(炮和船视为固定在一起)的作用力为内力。系统受到的外力有炮弹和船的重力、水对船的浮力在船静止的情况下,重力和浮力相等,但在发射炮弹时,浮力要大于重力因此,在垂直方向上,系统所受到的合外力不为零,但在水平方向上系统不受外力(不计水的阻力),故在该方向上动量守恒。变式:物块A、B质量分别为mA、mB,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大?【解析】 以A和
9、B组成的系统作为研究对象绳子烧断前,A、B一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力只有拉力F,物块A受到地面的摩擦力fA,物体B受到地面的摩擦力fB,且F=fAfB绳烧断后,直到B停止运动前F与fA、fB均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变所以此题可用动量守恒定律求解解:取初速v的方向为正方向,设绳断后A、B的速度大小分别为vA、vB,由动量守恒定律有(mAmB)vmAvAmBvB4分方向动量守恒、如图所示质量为m的铅球以大小为v0仰角为的初速度抛入一个装着砂子的总质量为M的静止的砂车中,砂车与地面的摩擦不计,球与砂车的共同速度是多少?【解析】
10、:小球及小车看成一个系统,该系统水平方向不受外力,故系统水平方向上动量守恒,由动量守恒定律得mv 0cos=(M+m)v,所以v=mv0cos/(M+m)【规律总结】此类问题属系统所受外力不为0,竖直方向上受到有外力,动量不守恒,但水平方向上不受外力作用,动量守恒又如大炮在以倾角发射炮弹时,炮身要后退,受到地面的阻力,但因其炸药产生的作用力很大,远大于受到的阻力,故仍认为水平方向动量守恒5.多物体多过程动量守恒5、两块厚度相同的木块A和B,并列紧靠着放在光滑的水平面上,其质量分别为mA=2.0kg,mB=0.90kg它们的下底面光滑,上表面粗糙另有质量mC=0.10kg的铅块C(其长度可略去不
11、计)以vC=10m/s的速度恰好水平地滑到A的上表面(见图),由于摩擦,铅块最后停在本块B上,测得B、C的共同速度为v=0.50m/s,求:木块A的速度和铅块C离开A时的速度解:设C离开A时的速度为vC,此时A、B的共同速度为vA,对于C刚要滑上A和C刚离开A这两个瞬间,由动量守恒定律知mCvC=(mA+mB)vA+mCvC (1)以后,物体C离开A,与B发生相互作用从此时起,物体A不再加速,物体B将继续加速一段时间,于是B与A分离当C相对静止于物体B上时,C与B的速度分别由vC和vA变化到共同速度v因此,可改选C与B为研究对象,对于C刚滑上B和C、B相对静止时的这两个瞬间,由动量守恒定律知m
12、CvC+mBvA=(mB+mC)v (2)由(l)式得 mCvC=mCvC-(mAmB)vA 代入(2)式 mCvC-(mA+mB)vA+mBvA=(mB+mC)v得木块A的速度所以铅块C离开A时的速度变式:甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时:(1)两车的速度各为多少?(2)甲总共抛出了多少个小球
13、?解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。(1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。设共同速度为V,则: M1V1M2V1=(M1+M2)V (2)这一过程中乙小孩及车的动量变化为:P=30630(1.5)=225(kgm/s)每一个小球被乙接收后,到最终的动量变化为 P1=16.511.51=15(kgm/s)故小球个数为6动量守恒定律解“人船模型”问题人船模型是动量守恒定律的拓展应用,将速度与质量的关系推广到位移与质量,做这类题目,首先要画好示意图,要注意两
14、个物体相对于地面的移动方向和两个物体位移大小之间的关系一个原来静止的系统,由于某一部分的运动而对另一部分有冲量,使另一部分也跟着运动,若现象中满足动量守恒,则有m1v1-m2v2 = 0,v1 = v2物体在这一方向上的速度经过时间的累积使物体在这一方向上运动一段距离,则距离同样满足s1 = s2,它们的相对距离s相 = s1+s26、质量为M、长为L的船静止在静水中,船头及船尾各站着质量分别为m1及m2的人,当两人互换位置后,船的位移有多大?【解析】利用“人船模型”易求得船的位移大小为:提示:若m1m2,本题可把(m1-m2)等效为一个人,把(M+2m2)看作船,再利用人船模型进行分析求解较简便应该注意到:此结论与人在船上行走的速度大小无关不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的以上所列举的人、船模型的前提是系统初动量为零如果发生相互作用前系统就具有一定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1+m2)v0=m1v1+m2v2列式。