收藏 分享(赏)

江西2015届高考数学二轮专题复习之专项检测31WORD版含答案.doc

上传人:高**** 文档编号:1040815 上传时间:2024-06-04 格式:DOC 页数:5 大小:95KB
下载 相关 举报
江西2015届高考数学二轮专题复习之专项检测31WORD版含答案.doc_第1页
第1页 / 共5页
江西2015届高考数学二轮专题复习之专项检测31WORD版含答案.doc_第2页
第2页 / 共5页
江西2015届高考数学二轮专题复习之专项检测31WORD版含答案.doc_第3页
第3页 / 共5页
江西2015届高考数学二轮专题复习之专项检测31WORD版含答案.doc_第4页
第4页 / 共5页
江西2015届高考数学二轮专题复习之专项检测31WORD版含答案.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、31直线和圆的位置关系1直线(13m)x(32m)y8m120(mR)与圆x2y22x6y10的交点个数为_答案2解析将含参直线方程分离变量可得m(3x2y8)x3y120,不论m取何值,直线恒过两直线的交点A(0,4),又易知定点A在圆内,故直线必与圆恒相交2(2014浙江改编)已知圆x2y22x2ya0截直线xy20所得弦的长度为4,则实数a的值为_答案4解析由圆的方程x2y22x2ya0可得,圆心为(1,1),半径r.圆心到直线xy20的距离为d.由r2d2()2,得2a24,所以a4.3(2014北京改编)已知圆C:(x3)2(y4)21和两点A(m,0),B(m,0)(m0),若圆C

2、上存在点P,使得APB90,则m的最大值为_答案6解析根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r1,且|AB|2m.因为APB90,连结OP,易知|OP|AB|m.要求m的最大值,即求圆C上的点P到原点O的最大距离因为|OC|5,所以|OP|max|OC|r6,即m的最大值为6.4(2014福建改编)直线l:ykx1与圆O:x2y21相交于A,B两点,则“k1”是“OAB的面积为”的_条件答案充分不必要解析将直线l的方程化为一般式得kxy10,所以圆O:x2y21的圆心到该直线的距离d.又弦长为2,所以SOAB,解得k1.因此可知“k1”是“OAB的面积为”的充分不必要

3、条件5直线xy20与圆x2y24相交于A,B两点,则弦AB的长度为_答案2解析圆心到直线xy20的距离d1,半径r2,弦长|AB|222.6“ab”是“直线yx2与圆(xa)2(xb)22相切”的_条件答案充分不必要解析根据已知得直线与圆相切的充要条件为:|ab2|2ab或ab4,故“ab”是“直线与圆相切”的充分不必要条件7已知圆C1:x2y22mx4ym250与圆C2:x2y22x2mym230,若圆C1与圆C2相外切,则实数m_.答案5或2解析对于圆C1与圆C2的方程,配方得圆C1:(xm)2(y2)29,圆C2:(x1)2(ym)24,则C1(m,2),r13,C2(1,m),r22.

4、如果圆C1与圆C2相外切,那么有C1C2r1r2,即5,则m23m100,解得m5或m2,所以当m5或m2时,圆C1与圆C2相外切8已知圆C关于y轴对称,经过点A(1,0),且被x轴分成的两段弧长比为12,则圆C的方程为_答案x22解析圆C关于y轴对称,圆C的圆心在y轴上,可设C(0,b),设圆C的半径为r,则圆C的方程为x2(yb)2r2.依题意,得解得圆C的方程为x22.9(2014江苏)在平面直角坐标系xOy中,直线x2y30被圆(x2)2(y1)24截得的弦长为_答案解析圆心为(2,1),半径r2.圆心到直线的距离d,所以弦长为22.10(2014山东)圆心在直线x2y0上的圆C与y轴

5、的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为_答案(x2)2(y1)24解析设圆C的圆心为(a,b)(b0),由题意得a2b0,且a2()2b2,解得a2,b1.所以,所求圆的标准方程为(x2)2(y1)24.11已知点M(3,1),直线axy40及圆(x1)2(y2)24.(1)求过M点的圆的切线方程;(2)若直线axy40与圆相切,求a的值;(3)若直线axy40与圆相交于A,B两点,且弦AB的长为2,求a的值解(1)圆心C(1,2),半径为r2,当直线的斜率不存在时,直线方程为x3.由圆心C(1,2)到直线x3的距离d312r知,此时,直线与圆相切当直线的斜率存在时,设方程

6、为y1k(x3),即kxy13k0.由题意知2,解得k.所以直线方程为y1(x3),即3x4y50.综上所述,过M点的圆的切线方程为x3或3x4y50.(2)由题意有2,解得a0或a.(3)圆心到直线axy40的距离为,()2()24,解得a.12在平面直角坐标系xOy中,已知圆x2y212x320的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.(1)求k的取值范围;(2)是否存在常数k,使得向量与共线?如果存在求k的值;如果不存在,请说明理由解方法一(1)圆的方程可写成(x6)2y24,所以圆心为Q(6,0)过P(0,2)且斜率为k的直线方程为ykx2,代入圆的方程

7、得x2(kx2)212x320,整理得(1k2)x24(k3)x360.直线与圆交于两个不同的点A,B等价于4(k3)2436(1k2)42(8k26k)0,解得k0,即k的取值范围为(,0)(2)设A(x1,y1),B(x2,y2),则(x1x2,y1y2),由方程得,x1x2.又y1y2k(x1x2)4.而P(0,2),Q(6,0),(6,2)所以与共线等价于2(x1x2)6(y1y2),将代入上式,解得k.由(1)知k(,0),故不存在符合题意的常数k.方法二(1)Q(6,0),直线AB的方程:ykx2,Q到AB的距离d2(圆半径r2),k(,0)(2)2(C为AB中点),.而(6,2),过Q与AB垂直的直线为y(x6),解得C(,),即(,),k(,0),故不存在符合题意的常数k.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3