ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:137.50KB ,
资源ID:1036257      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1036257-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017高考数学人教A版理科一轮复习练习:第12章 概率、随机变量及其分布 第5讲 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017高考数学人教A版理科一轮复习练习:第12章 概率、随机变量及其分布 第5讲 WORD版含答案.doc

1、基础巩固题组(建议用时:30分钟)一、选择题1.(2014新课标全国卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45解析记事件A表示“一天的空气质量为优良”,事件B表示“随后一天的空气质量为优良”,P(A)0.75,P(AB)0.6.由条件概率,得P(B|A)0.8.答案A2.(2016济南模拟)设随机变量XB,则P(X3)等于()A. B. C. D.解析XB,由二项分布可得,P(X3)C.答案A3.某地区高二女生的体重X(单位

2、:kg)服从正态分布XN(50,25).若该地区共有高二女生2 000人,则体重在50 kg65 kg间的女生共有的人数是()A.683 B.954 C.997 D.994解析XN(50,25),50,5.3503535,3503565.体重在35 kg65 kg间的女生人数占总数的百分比是0.997.而体重在35 kg50 kg和50 kg65 kg间的女生数相等,因此体重在50 kg65 kg间的高二女生共有2 0000.997997(人).答案C4.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A. B.

3、 C. D.解析设事件A:甲实习生加工的零件为一等品;事件B:乙实习生加工的零件为一等品,则P(A),P(B),所以这两个零件中恰有一个一等品的概率为P(A)P(B)P(A)P()P()P(B)(1)(1).答案B5.设随机变量X服从二项分布XB,则函数f(x)x24xX存在零点的概率是()A. B. C. D.解析函数f(x)x24xX存在零点,164X0,X4.X服从XB,P(X4)1P(X5)1.答案C二、填空题6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为_.解析设该队员每次罚球的命中率为p,其中0p1,则依题意有1p2,p2

4、,又0p1,p.答案7.假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,记一天中从甲地去乙地的旅客人数800X900的概率为p0,则p0_.解析由XN(800,502),知800,50,又P(700X900)0.954 4,则P(800X900)0.954 40.477 2.答案0.477 28.(2016河北衡水中学质检)将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)_.解析依题意,随机试验共有9个不同的基本结

5、果,由于随机投掷,且小正方形的面积大小相等,所以事件B包含4个基本结果,事件AB包含1个基本结果.所以P(B),P(AB).所以P(A|B).答案三、解答题9.(2015福建卷)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解(1)设“当天小王的该银行卡被锁定”的

6、事件为A,则P(A).(2)依题意得,X所有可能的取值是1,2,3.又P(X1),P(X2),P(X3)1.所以X的分布列为X123P所以E(X)123.10.(2014新课标全国卷)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(,2),其中近似为样本平均数x,2近似为样本方差s2.利用该正态分布,求P(187.8Z212.2);某用户从该企业购买了100件这种产品,记X表示这

7、100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用的结果,求E(X).附录:若ZN(,2),则P(Z)0.682 6,且12.2.解(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为1700.021800.091900.222000.332100.242200.082300.02200,s2(30)20.02(20)20.09(10)20.2200.331020.242020.083020.02150.(2)由(1)知,ZN(200,150),12.2.从而P(187.8Z212.2)P(20012.2Z20012.2)0.682 6.由知,一件产品的质量指标值

8、位于区间(187.8,212.2)的概率p0.682 6,依题意知XB(100,0.682 6),所以E(X)np1000.682 668.26.能力提升题组(建议用时:25分钟)11.(2016天津南开调研)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X12)等于()A.C B.CC.C D.C解析由题意知第12次取到红球,前11次中恰有9次红球2次白球,由于每次取到红球的概率为,所以P(X12)C.答案D12.设随机变量服从正态分布N( ,2),函数f(x)x24x没有零点的概率是,则()A.1 B.4 C

9、.2 D.不能确定解析根据题意,函数f(x)x24x没有零点时,1640,即4.根据正态密度曲线的对称性,当函数f(x)x24x 没有零点的概率是时,4.答案B13.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为_.解析设元件1,2,3的使用寿命超过1 000小时的事件分别记为A,B,C,显然P(A)P(B)P(C),该部件的使用寿命超过1 000小时的事件为(ABABAB)C,该部

10、件的使用寿命超过1 000小时的概率P.答案14.(2016豫东名校联考)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概 率0.50.5作物市场价格(元/kg)610概 率0.40.6(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)0.5,P(B)0.4,因为利润产量市场价格成本

11、,所以X所有可能的取值为500101 0004 000,50061 0002 000,300101 0002 000,30061 000800.P(X4 000)P()P()(10.5)(10.4)0.3,P(X2 000)P()P(B)P(A)P()(10.5)0.40.5(10.4)0.5,P(X800)P(A)P(B)0.50.40.2,所求X的分布列为X4 0002 000800P0.30.50.2(2)设Ci表示事件“第i季利润不少于2 000元”(i1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(Ci)P(X4 000)P(X2 000)0.30.50.8(i1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)P(C1)P(C2)P(C3)0.830.512;3季中有2季的利润不少于2 000元的概率为P(1C2C3)P(C12C3)P(C1C23)30.820.20.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.5120.3840.896.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3