ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:463KB ,
资源ID:1035091      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1035091-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(安徽省亳州市第三十二中学2020-2021学年高二数学上学期第五次周测试题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

安徽省亳州市第三十二中学2020-2021学年高二数学上学期第五次周测试题.doc

1、安徽省亳州市第三十二中学2020-2021学年高二数学上学期第五次周测试题内容:数列、正弦定理 一、单选题(50分)1在等比数列中,已知,则( )ABCD2在中,则的面积为( )ABCD3已知中,则等于( )A或BCD或4在中,已知,则为( )A等腰三角形B直角三角形C等边三角形D等腰或直角三角形5在中,角,的对边分别是,且,若解此三角形有两解,则的取值范围是( )ABCD二、填空题(30分)6在等比数列中,成等差数列,则_.7在中,内角A、B、C所对的边分别为a、b、c,则中最长的边的边长为_.8设内角A,B,C所对应的边分别为a,b,c.已知,则_三、解答题9(20分)解三角形:10(20

2、分)已知等差数列的首项,公差为,且数列是公比为的等比数列.(1)求数列的通项公式;(2)求数列的前项和.(选做题)11(30分)在中,角、所对应的边分别为、,且满足.(1)求角的值;(2)若,求的值.参考答案1C【解析】由题设可得,由此可得,故应选答案C 2B【解析】【分析】利用正弦定理面积公式计算即可得到答案.【详解】故选:B【点睛】本题主要考查正弦定理面积公式,属于简单题.3A【解析】【分析】应用正弦定理,得到,再由边角关系,即可判断B的值.【详解】解:,由得,B或.故选:A.【点睛】本题考查正弦定理及应用,考查三角形的边角关系,属于基础题,也是易错题.4D【解析】【分析】先根据正弦定理进

3、行边换角,然后结合二倍角公式求解即可.【详解】由,有,由正弦定理有,即所以有或即或所以三角形为等腰三角形或直角三角形,故选:D .【点睛】考查三角形形状的判定,正确应用正弦定理进行边化角是解题突破口,属于基础题.5C【解析】【分析】由三角形有两解可得,或,得到的取值范围,再由正弦定理,即可求解.【详解】由正弦定理得,要使此三角形有两解,则,且,即,解得.故选:C.【点睛】本题考查正弦定理解三角形,确定角的范围是解题的关系,考查数学运算能力,属于基础题.6【解析】【分析】根据三项成等差数列可构造方程求得等比数列的公比满足,将所求式子化为和的形式,化简可得结果.【详解】,成等差数列 即:,解得:本

4、题正确结果:【点睛】本题考查等差数列和等比数列的综合应用问题,关键是能够求解出等比数列的基本量,属于基础题.7【解析】【分析】先求出,从而可知a为最长的边,然后利用正弦定理可求出a的值【详解】由,可得a为最长的边,.故答案为: 【点睛】此题考查正弦定理的应用,属于基础题8【解析】【分析】由正弦定理可得,利用两角和的正弦公式化简即可得到答案.【详解】解:由及正弦定理,得,即,因为,所以故答案为:【点睛】本题考查正弦定理在解三角形中的应用,涉及到边角互化,两角和的正弦公式,考查学生的基本运算能力,属于基础题.9,,.【解析】【分析】先求出,再利用正弦定理求出,即得解.【详解】由题得,,由正弦定理得

5、.由正弦定理得.所以,,.【点睛】本题主要考查正弦定理解三角形,意在考查学生对该知识的理解掌握水平.10(1);(2).【解析】【分析】(1)由等比数列定义可构造方程求得,根据等差数列通项公式可求得结果;(2)由(1)可求得,采用裂项相消法可求得.【详解】(1)数列是公比为的等比数列,解得:.又,.(2)由(1)得:.【点睛】本题考查等差和等比数列的简单应用、裂项相消法求解数列的前项和的问题;解题关键是能够对于数列通项公式进行准确裂项,进而前后相消求得前项和.11(1);(2).【解析】【分析】(1)根据正弦定理边化角可得,可得;(2)根据二倍角的余弦公式可得,可得,再根据三角形的内角和定理以及两角和的正弦公式可得结果.【详解】(1)由正弦定理得, 因为,即,由于,所以. (2), 因为,故, 所以.【点睛】本题考查了正弦定理,考查了两角和的正弦公式,考查了二倍角的余弦公式,属于基础题.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3