1、配餐作业(三十一)等比数列及其前n项和一、选择题1(2016南昌模拟)等比数列x,3x3,6x6,的第四项等于()A24B0C12 D24解析:由题意知(3x3)2x(6x6),即x24x30,解得x3或x1(舍去),所以等比数列的前3项是3,6,12,则第四项为24。答案:A2(2016福州模拟)已知等比数列an的前n项和为Snx3n1,则x的值为()A. BC. D解析:当n1时,a1S1x,当n2时,anSnSn1x(3n13n2)2x3n2,因为an是等比数列,所以a1,由得x,解得x。答案:C3(2016昆明模拟)在等比数列an中,若a3,a7是方程x24x20的两根,则a5的值是(
2、)A2 BC D.解析:根据根与系数之间的关系得a3a74,a3a72,由a3a740,a3a70,所以a30,a70,即a50,由a3a7a,所以a5。答案:B4已知等比数列an的前n项和为Sn,且a1a3,a2a4,则()A4n1 B4n1C2n1 D2n1解析:由除以可得2,解得q,代入得a12,an2n1,Sn4,2n1,选D。答案:D5等比数列an的各项均为正数,且a5a6a4a718,则log3a1log3a2log3a10()A12 B10C8 D2log35解析:由题意可知a5a6a4a7,又a5a6a4a718得a5a6a4a79,而log3a1log3a2log3a10lo
3、g3(a1a2a10)log3(a5a6)5log395log331010。答案:B6已知各项均为正数的等比数列an中,a4与a14的等比中项为2,则2a7a11的最小值为()A16 B8C2 D4解析:由题意知a40,a140,a4a148,a70,a110,则2a7a112228,当且仅当即a72,a114时取等号,故2a7a11的最小值为8,故选B。答案:B二、填空题7在各项均为正数的等比数列an中,若a21,a8a62a4,则a6的值是_。解析:设公比为q,则由a8a62a4,得a1q7a1q52a1q3,q4q220,解得q22(q21舍去),所以a6a2q44。答案:48等比数列a
4、n的各项均为正数,且a1a54,则log2a1log2a2log2a3log2a4log2a5_。解析:由等比数列的性质可知a1a5a2a4a,于是,由a1a54得a32,故a1a2a3a4a532,则log2a1log2a2log2a3log2a4log2a5log2(a1a2a3a4a5)log2325。答案:59(2016徐州模拟)若等比数列an满足:a2a420,a3a540,则公比q_;前n项和Sn_。解析:由a2a420,a3a540,得即解得q2,a12,所以Sn2n12。答案:22n12三、解答题10(2016河南八市质检)已知递增的等比数列an的前n项和为Sn,a664,且a
5、4,a5的等差中项为3a3。(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Tn。解析:(1)设等比数列an的公比为q(q0),由题意,得,解得,所以an2n。(2)因为bn,所以Tn,Tn,所以Tn,故Tn。11(2016天津模拟)已知等比数列an的前n项和为Sn,若S1,2S2,3S3成等差数列,且S4。(1)求数列an的通项公式;(2)求证:Sn。解析:(1)设等比数列an的公比为q。因为S1,2S2,3S3成等差数列,所以4S2S13S3,即4(a1a2)a13(a1a2a3),所以a23a3,所以q。又S4,即,解得a11,所以ann1。(2)证明:由(1)得Sn。12
6、(2016华中师大附中期中)已知数列an是等差数列,bn是等比数列,且a1b12,b454,a1a2a3b2b3。(1)求数列an和bn的通项公式;(2)数列cn满足cnanbn,求数列cn的前n项和Sn。解析:(1)设an的公差为d,bn的公比为q,由b4b1q3,得q327,从而q3,bn23n1。又a1a2a33a2b2b361824,a28,da2a1826,ana1(n1)d26(n1)6n4。an6n4,bn23n1。(2)cnanbn4(3n2)3n1。令Sn4130431732(3n5)3n2(3n2)3n1,则3Sn4131432733(3n5)3n1(3n2)3n。两式相减得2Sn4133133233n1(3n2)3n,2Sn132333n(3n2)3n2(76n)3n7。Sn7(6n7)3n。