收藏 分享(赏)

云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc

上传人:高**** 文档编号:103038 上传时间:2024-05-25 格式:DOC 页数:33 大小:3.25MB
下载 相关 举报
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第1页
第1页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第2页
第2页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第3页
第3页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第4页
第4页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第5页
第5页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第6页
第6页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第7页
第7页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第8页
第8页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第9页
第9页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第10页
第10页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第11页
第11页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第12页
第12页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第13页
第13页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第14页
第14页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第15页
第15页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第16页
第16页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第17页
第17页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第18页
第18页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第19页
第19页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第20页
第20页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第21页
第21页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第22页
第22页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第23页
第23页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第24页
第24页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第25页
第25页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第26页
第26页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第27页
第27页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第28页
第28页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第29页
第29页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第30页
第30页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第31页
第31页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第32页
第32页 / 共33页
云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析).doc_第33页
第33页 / 共33页
亲,该文档总共33页,全部预览完了,如果喜欢就下载吧!
资源描述

1、云大附中2012届高三考前60天理科数学辅导(解题方法技巧和考试心理分析)(一) 知识、方法篇一、集合与逻辑1研究集合必须注意集合元素的特征即三性(确定,互异,无序),特别注意区分集合中元素的形式:如:(1)已知集合,则=_ (2)设,则2应注意到“极端”情况:集合时,你是否忘记或;条件为时,在讨论的时候不要遗忘了的情况。 如(1)对一切恒成立,求a的取植范围,你讨论a2的情况了吗? (2),若,求的取值。(答:a0)不要遗忘了3对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为 如满足集合M有_7_个。4你是否了解CU(AB)=CUACUB; CU(AB)=CU

2、ACUB;card(AB)=?AB=AAB=BABCUBCUAACUB=CUAB=UA是B的子集()AB=B5补集思想常运用于解决否定型或正面较复杂的有关问题。如:(1)已知函数在区间上至少存在一个实数,使,求实数的取值范围。(答:)(2)设关于的不等式的解集为,已知,求实数的取值范围。6.对逻辑联结词“或”,“且”,“非”的含义和表示符号还模糊吗,你是否熟悉含有逻辑联结词的命题真假判断的准则?“或”、 “且”、 “非”的真值判断(1)“非p”形式复合命题的真假与F的真假相反;(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其

3、他情况时为真如: 已知命题所有有理数都是实数,命题正数的对数都是负数,则下列命题中为真命题的是( )ABCD7四种命题间的关系清楚了吗?一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)、原命题为真,它的逆命题不一定为真。、原命题为真,它的否命题不一定为真。、原命题为真,它的逆否命题一定为真。如:已知,“若,则或”的逆否命题是“若且则”8注意命题的否定与它的否命题的区别: 命题的否定是;否命题是命题“p或q”的否定是“P且Q”,“p且q”的否定是“P或Q” 常见结论的否定形式原结论否定原结论否定是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有个

4、小于不小于至多有个至少有个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或原结论否定原结论否定是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有个小于不小于至多有个至少有个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或原结论否定原结论否定是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有个小于不小于至多有个至少有个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或原结论否定原结论否定是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有个小于不小于至多有个至少有个对所有,成

5、立存在某,不成立或且对任何,不成立存在某,成立且或如 :“若和都是偶数,则是偶数”的否命题是“若和不都是偶数,则是奇数”否定是“若和都是偶数,则是奇数”9充分条件,必要条件和充要条件的概念记住了吗?会从集合角度解释吗,若,则A是B的充分条件;B是A的必要条件;若A=B,则A是B的充要条件。若,则A是B的充分不必要条件如;(1)设命题p:;命题q:。若p是q的必要而不充分的条件,则实数a的取值范围是 (答:)(2)“”是“对任意的正数,”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、函数与导数10你对幂的运算,对数运算的法则熟练掌握了吗?的值的大小会判断么?,。如:

6、的值为_(答:)如:.已知,则= 11二次函数问题三种形式:一般式f(x)=ax2+bx+c(轴-b/2a,a0,顶点?);顶点式f(x)=a(x-h)2+k;零点式f(x)=a(x-x1)(x-x2)(轴?);b=0偶函数;三个二次问题熟悉了么? 二次函数()的图象一元二次方程有两相异实根有两相等实根 无实根 R 12反比例函数:平移(中心为(b,a)13函数是奇函数, 14分段函数在近几年的高考中出现的频率比较高,你能正确理解分段函数的含义吗?如:设函数则的值为( )ABCD15函数的图象是每年高考的一个热点,你会知式选图,知图选式,图象变换,以及自觉的运用图象解决一些方程,不等式的问题吗

7、?如: (1)函数的图象是( )yxOyxOyxOyxOABCD(2)函数在定义域内可导,其图象如图,记的导函数为,则不等式的解集为_16函数的单调性会判断吗定义法; 单调性的定义:在区间上是增(减)函数当时;导数法. 如:已知函数在区间上是增函数,则的取值范围是_(答:);注意:能推出为增函数,但反之不一定。如函数在上单调递增,但,是为增函数的充分不必要条件。注意:函数单调性与奇偶性的逆用了吗?.如:已知奇函数是定义在上的减函数,若,求实数的取值范围。(答:)17奇偶性:f(x)是偶函数f(-x)=f(x)=f(|x|);f(x)是奇函数f(-x)=-f(x);定义域含零的奇函数过原点(f(

8、0)=0);定义域关于原点对称是为奇函数或偶函数的必要而不充分的条件。 如:(1) 设f(x)是定义在R上的偶函数,又当时,则的值为( )(2)设是连续的偶函数,且当x0时是单调函数,则满足的所有x之和为( )ABCD(3)设奇函数在上为增函数,且,则不等式的解集为ABCD18函数的周期性的判断掌握了吗。若函数满足,则的周期为2;若恒成立,则;若恒成立,则. ()如(1)定义在上的偶函数满足,且在上是减函数,若是锐角三角形的两个内角,则的大小关系为_(答:);(2)已知定义在上的函数是以2为周期的奇函数,则方程在上至少有_个实数根(答:5)19常见的图象变换掌握了吗?如(1)要得到的图像,只需

9、作关于_轴对称的图像,再向_平移3个单位而得到(答:;右);(2)将函数的图象向右平移2个单位后又向下平移2个单位,所得图象如果与原图象关于直线对称,那么 (答:C)(3)将函数的图像上所有点的横坐标变为原来的(纵坐标不变),再将此图像沿轴方向向左平移2个单位,所得图像对应的函数为_(答:);20函数的对称性掌握了吗?。(1)函数关于轴的对称曲线方程为;(2)函数关于轴的对称曲线方程为; (3)函数关于原点的对称曲线方程为; (4)曲线关于直线的对称曲线的方程为。曲线关于直线的对称曲线的方程为;曲线关于直线的对称曲线的方程为。如:己知函数,若的图像是,它关于直线对称图像是关于原点对称的图像为对

10、应的函数解析式是_(答:);(5)曲线关于点的对称曲线的方程为。如若函数与的图象关于点(-2,3)对称,则_(答:)如果函数对于一切,都有,或那么函数的图象关于直线对称是偶函数; 如果函数对于一切,都有,那么函数的图象关于点()对称.y=f(x)满足f(x +a)=f(xa)或f(x2a)=f(x)恒成立,2a为周期;21你能画指数函数和对数函数的图象吗?理解指数函数,对数函数的图象通过的特殊点吗?如:(1) 已知实数满足等式,下列五个关系式:其中可能成立的关系式有( )A B C D (2)设均为正数,且,.则( )A. B. C. D. 22你对函数的最大值或最小值的概念正确理解了吗?如:

11、(1)设函数的定义域为,有下列三个命题:若存在常数,使得对任意有则是函数的最大值;若存在使得对任意有则是函数的最大值;若存在使得对任意有则是函数的最大值.这些命题中,真命题的个数是( )A. 0 B. 1 C. 2 D. 3(2)已知函数若对恒成立,则的值为A. B. C . D. 23什么是函数的零点?函数零点有什么性质?你能正确运用函数零点的性质解决有关方程的根的分布问题吗?练习 函数的零点所在的大致区间是( ) A. B. C. D. 24.你理解导数的几何意义吗?会求经过一点的曲线的切线方程吗? 过某点的切线不一定只有一条如:已知函数(1)求曲线在点处的切线方程;(2)若过点可作曲线的

12、三条切线,求实数的取值范围.25.你理解函数的单调性和导数的关系吗? 在应用导数研究函数的单调性时,往往需要解含有参数的二次不等式,在进行讨论时,你考虑的全面吗,注意到特殊情况了吗?你是否注意二次项系数为零的情况?如;已知函数,()讨论函数的单调区间;()设函数在区间内是减函数,求的取值范围26。对于形如的复合函数导数的求法,你掌握了吗?这是正确应用导数解决问题的前提.如:若上是减函数,则的取值范围是( ) A. B. C. D. 27.你理解函数在某点取得极值的必要条件和充分条件吗?函数的导函数,则是为函数极值的必要不充分条件. 给出函数极大(小)值的条件,一定要既考虑,又要考虑检验“左正右

13、负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记。如:设函数,其中证明:当时,函数没有极值点;当时,函数有且只有一个极值点,并求出极值28.在应用导数求参数的范围时,你注意到端点的取舍吗?讨论时遗漏特殊情况了吗?设函数为实数。(1)已知函数在处取得极值,求的值; (2)已知不等式对任意都成立,求实数的取值范围。29.你理解存在性问题和恒成立问题的区别与联系吗?在解题时切不可把二者混为一谈.遇到含参不等式恒成立求参变量的范围问题,通常采用分离参数法,转化为求某函数的最大值(或最小值);具体地:g(a)f(x)在xA上恒成立 g(a)f(x)max,g(a)f(x)在xA上恒成立 g

14、(a)0在xA上恒成立f(a,x)min0, (xA)及f(a,x)0, (xA)来转化;还可以借助于函数图象解决问题。特别关注:“不等式f(a,x)0对所有xM恒成立”与 “不等式f(a,x)0对所有aM恒成立”是两个不同的问题,前者是关于x的不等式,而后者则应视为是关于a的不等式。特别提醒:“判别式”只能用于“二次函数对一切实数恒成立”的问题,其它场合,概不适用。af(x)恒成立af(x)max,;af(x)恒成立af(x)min;如:函数. (1).若关于的不等式有解,则实数的取值范围是 ;(2) 若关于的不等式恒成立,则实数的取值范围是 .30几类常见的抽象函数 :正比例函数型: -;

15、幂函数型: -,;指数函数型: -,; 对数函数型: -,;三角函数型: - 。O 1 2 3 xy如:(1)已知是定义在R上的奇函数,且为周期函数,若它的最小正周期为T,则_(答:0)(2)已知是定义在上的奇函数,当时,的图像如右图所示,那么不等式的解集是_(答:); 三、数列问题31an= 注意验证a1是否包含在an 的公式中。32等差数列中an=a1+(n-1)d; an=am+ (nm)d, Sn=。;当m+n=p+q,am+an=ap+aq;等比数列中,an=amqn-m; 当m+n=p+q ,aman=apaq;,;在等比数列中,;如: (1)如果成等比数列,那么( )A. B.

16、C. D. (2)在等比数列中,公比q是整数,则=_(答:512);(3)各项均为正数的等比数列中,若,则 (答:10)。33你能求一般数列中的最大或最小项吗?如(1)等差数列中,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);(2)若是等差数列,首项,则使前n项和成立的最大正整数n是 (答:4006)34. 等差数列an的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。等比数列an的任意连续m项的和且不为零时构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。如:公比为-1时,、-、-、

17、不成等比数列35.求和常用方法:公式、分组、裂项相消、错位相减、倒序相加.关键找通项结构. 由数列的前项和的公式求数列的通项公式时,你注意验证的情况了吗? 在利用等比数列的前n项和公式时,你注意讨论公比等于1了吗?.常用结论1): 1+2+3+.+n = 2) 1+3+5+.+(2n-1) =3) , 4) 如:(1)已知,则_(答:)(2).设等比数列的公比为,前n项和,若成等差数列.则的值是 .(3)设等比数列的公比为,前n项和,则的取值范围是 .(4).已知数列的各项均为正数,为其前项和,对于任意的满足关系式 . (1)求数列 的通项公式;(2)设数列的通项公式是 ,前项和为,求.(5)

18、已知数列的前项和为. ()求数列的通项公式;()若, 数列的前项和为,求证.36求通项公式常用方法-“迭代法”, 转化为等差数列,等比数列法。倒数法等会用吗?, an(anan-1)+(an-1an-2)+(a2a1)a1 ; an如:(1)数列满足,求(答:)如(2)已知,求(答:);(3)已知数列满足=1,求(答:)(4)已知数列的通项公式,设数列对任意自然数有,则 .(5) 已知数列的前项和为,,.求数列的通项.四、三角问题37弧长公式:,扇形面积公式:,1弧度(1rad). 如:已知扇形AOB的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积。(答:2) 38你能迅速画出或得到函数

19、图象的简图吗?你了解对函数图象变化的影响吗? 你熟练掌握函数的性质吗? (单调性,奇偶性,值域,对称轴方程,对称中心)如(1)函数的奇偶性是_(答:偶函数);(2)已知函数为常数),且,则_(答:5);(3)函数的图象的对称中心和对称轴分别是_、_(答:、);(4)已知为偶函数,求的值。(答:)(5) 已知函数的最小正周期为,则该函数的图象A关于点对称B关于直线对称C关于点对称D关于直线对称(6) 已知函数(、为常数,)在处取得最小值,则函数是()A偶函数且它的图象关于点对称 B偶函数且它的图象关于点对称C奇函数且它的图象关于点对称 D奇函数且它的图象关于点对称(7) 函数在区间的简图是39你

20、熟练掌握了函数的图象变换吗 如:将函数y=()(R)的图象上所有的点向左平行移动个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为 ( ) A.()(R)B.()(R) C.()(R)D.()(R)40你知道辅助角公式对研究三角函数性质的重要性吗/熟练掌握了吗?练习(1)已知函数,则的最小正周期是 ;最大值是 . (2)已知函数(,)为偶函数,且函数图象的两相邻对称轴间的距离为(1)求的值;(2)将函数的图象向右平移个单位后,得到函数的图象,求的单调递减区间41.求角的函数值及角的范围是高考的重点.你对三角函数恒等变换的规律熟练掌握吗? yOAB 1练习

21、(1)如图,在平面直角坐标系中,以轴为始边做两个锐角,,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为()求tan()的值;()求的值(2) 已知()求的值;()求的值.42.正弦定理,余弦定理的内容是什么,你能灵活运用它们解决解三角形的问题吗?术语:坡度、仰角、俯角、方位角的概念明白吗?在中,练习(1) 已知船在灯塔北偏东且到的距离为,船在灯塔西偏北且到的距离为,则两船的距离为A. B. C. D.(2) 北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为米(如图所

22、示),则旗杆的高度为A米 B米 C米 D米(3)在中,内角对边的边长分别是,已知,()若的面积等于,求;()若,求的面积43诱导公式记熟了吗?重要公式;及变形会用吗如:(1)已知,则_;_(答:;)(2)在内,使成立的的取值范围是( )A. B.C. D.44会巧变角吗?:如,等),如(1)已知,那么的值是_(答:);五、平面向量45向量定义、向量模、零向量、单位向量、相反向量、共线向量、相等向量的概念清楚了吗?向量加、减法的平行四边形与三角形法的几何意义明白了吗?46向量数量积的性质掌握了吗?设两个非零向量,其夹角为,则:;当,同向时,特别地,;当与反向时,;当为锐角时,0,且不同向,是为锐

23、角的必要非充分条件;当为钝角时,0,且不反向,是为钝角的必要非充分条件;。如(1)已知,如果与的夹角为锐角,则的取值范围是_(答:或且);47理解向量在方向上的投影cos,ab=|a|b|cos=x2+y1y2; 注:|a|cos叫做a在b方向上的投影;|b|cos叫做b在a方向上的投影;ab的几何意义:ab等于|a|与|b|在a方向上的投影|b|cos的乘积。如:.已知中,角、的对边分别为、,为边上的高,以下结论不正确的是:( ) AB C D 48.向量共线的充要条件是什么?向量垂直的充要条件是什么?你会用平面向量的基本定理解决问题吗? 三点共线的充要条件P,A,B三点共线;P,A,B,C

24、四点共面。如:(1)已知两点,若点满足,其中且,则点的轨迹是_(答:直线AB)(2)设,若向量与向量共线,则 ;(3)在平行四边形中,与交于点是线段的中点,的延长线与交于点若,则( )ABCD49.两个向量的夹角是怎样定义的,它的取值范围是什么?怎样求两向量的夹角?两向量的夹角是钝角的充要条件是什么?你会运用平面向量的数量积解决问题吗?练习(1),的夹角为, 则 ;(2)已知平面向量=(1,3),=(4,2),与垂直,则是( )A. 1 B. 1 C. 2 D. 250在中,为的重心,特别地为的重心;为的垂心; 向量所在直线过的内心(是的角平分线所在直线);在中,给出,等于已知是的外心练习:(

25、1)若O是所在平面内一点,且满足,则的形状为_(答:直角三角形);(2)若为的边的中点,所在平面内有一点,满足,设,则的值为_(答:2);(3)若点是的外心,且,则的内角为_(答:);51点按平移得,则 或 函数按平移得函数方程为:如(1)按向量把平移到,则按向量把点平移到点_(答:(,);(2)函数的图象按向量平移后,所得函数的解析式是,则_(答:)52平面向量与三角函数的结合是高考的热点,你能借助向量工具解决三角函数问题吗?练习(1)的三内角所对边的长分别为,设向量,若,则角的大小为( )A. B. C. D. (2)已知向量,,且为锐角.()求角的大小;()求函数的值域.六、不等式问题5

26、3常用不等式(1)若ab0,则 (2)若, (当且仅当时取等号);4 ;(3)a、b、cR,(当且仅当时,取等号);(4)若,则(糖水的浓度问题)。 (5)(何时取等?)如:(1)如果正数、满足,则的取值范围是_(答:)(2)函数的最小值 。(答:8)(3)若,则的最小值是_(答:);(4)正数满足,则的最小值为_(答:); (5)的最小值为 . (6)函数的图象恒过定点,若点在直线上,其中,则的最小值为 .54常用不等式变形(1);(2);(3) ; (程度大)(4) ; (程度小)七、空间立体几何55.你是否理解三视图的投影规律:“长对正,高平齐,宽相等”的含义,会应用吗?斜二测画法的规则

27、是否还熟悉?直观图与实际图形比较有何区别? 练习一个空间几何体G-ABCD的三视图如图所示,其中Ai,Bi,Ci,Di,Gi(i=1,2,3)分别是A,B,C,D,G在直立、侧立、水平三个投影面内的投影.在正视图中,四边形A1B2C3D4为正方形,且A1B2=2a;在侧视图中,A2D2A2G2;在俯视图中,G3D3=G3C3= 根据三视图画出几何体的直观图,并标明A,B,C,D,G五点的位置和该几何体满足的条件 ;三棱锥DACG的体积是 .56.立体几何中,平行,垂直关系可以进行以下转化:直线/直线,直线/平面,平面/平面之间的转化;直线直线,直线平面,平面平面之间转化,这些转化各自的依据是什

28、么?常用定理:线面平行;线线平行:;面面平行:;线线垂直:;所成角900;线面垂直:;面面垂直:二面角900; ;练习:已知是两条不同直线,是三个不同平面,下列命题中正确的是( )ABC D57.(理科)空间的三种角(异面直线所成角,直线和平面所成角,二面角及其平面角)的概念清楚吗?它们的取值范围是什么?用几何法,向量方法求这些角的基本方法你熟练吗?异面直线所成角的范围:;异面直线AB与CD所成角:直线和平面所成的的范围;直线PM与面所成角:(,为法向量)二面角的范围;:(,为法向量)练习:已知长方体直线与平面所成的角为,垂直于,为的中点.(I)求异面直线与所成角的余弦值;(II)求平面与平面

29、所成二面角的余弦值.。OK58球的内接正多面体和外切正多面体的中心均为球心。球的内接长方体的体对角线是球的直径,球的外切正方体的边长是球的直径,与边长为a的正方体各条棱都相切的球的直径为a;边长为a的正四面体的内切球的半径为(正四面体高的),外接球的半径为。八、解析几何60. 你理解倾斜角和斜率的关系吗?任何直线都有倾斜角,在解决某些问题时,你考虑到斜率不存在的情况吗?练习:已知mR,直线l:,则直线l斜率的取值范围是 ;若过点(3,0)的直线和圆C:相切,则直线的斜率为_;已知椭圆(ab0)的右焦点为F,直线:,离心率e=过顶点A(0,b)作AM,垂足为M,则直线FM的斜率等于 .61.利用

30、圆的平面几何性质研究直线和圆,圆与圆的位置关系,可以大大地减少运算量.在解决与圆有关的问题时,你是否充分利用了圆的平面几何性质. 直线与圆的关系, 圆与圆的关系会用几何性质讨论吗?练习:已知直线l: (其中)和圆C: .问直线l能否将圆C分割成弧长的比值为的两段圆弧?为什么?62双曲线的渐近线与双曲线的方程之间的关系清楚了吗?练习(1)若双曲线一条渐近线为且过,求双曲线的方程?(.)(2)设双曲线的右顶点为A,右焦点为F过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为63.椭圆,双曲线的标准方程各有两种形式,抛物线的标准方程有四种形式,对各种标准方程,你是否运用自如.练习

31、设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为A. B. C D.已知圆以圆与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 64.圆锥曲线的定义的高考的重点,你对椭圆和抛物线的定义掌握熟练了吗?会应用吗?练习已知点P在抛物线上,那么点P到点的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( )ABCD已知为椭圆的两个焦点,过的直线交椭圆于A、B两点, 若,则=_。已知,动圆M过点,且和定圆相切,则动圆的圆心M的轨迹方程是 .65. 圆锥曲线的简单几何性质是高考客观

32、题中经常考查的知识点,对这些性质你能熟练应用吗?练习.在平面直角坐标系中,椭圆的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= 。抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,垂足为,则的面积是()ABCD在直角坐标系中,椭圆:的左、右焦点分别为. 直线过点,且垂直于椭圆的长轴,动直线垂直于直线于点线段的垂直平分线交于点,则点轨迹的方程是 .66抛物线的特殊问题会计算吗?抛物线y2=2px上点可设为(,y0);直线的另一种假设为x=my+a;抛物线y2=2px(p0)的焦点弦AB性质: x1x2=;y1y2=p2; ;以AB为直径的圆与准线相

33、切;以AF(或BF)为直径的圆与轴相切;。 焦半径;通径2p,焦准距p;,|AB|=67弦长公式会用吗?|AB|=,(其中k为直线AB的斜率),或|AB|=68处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x1,y1)、B(x2,y2)为椭圆(ab0)上不同的两点,M(x0,y0)是AB的中点,则KABKOM=;对于双曲线(a0,b0),类似可得:KAB.KOM=;对于y2=2px(p0)抛物线有KAB69.样确定二元一次不等式(组)表示的平面区域?你会解决简单的线性规划问题吗? 求最优解注意目标函数值截距目标函数斜率与区域边界斜率的关系.(斜率),(距离),截距练习(1)设变量满

34、足约束条件则目标函数的最小值为 (2)已知,则的取值范围是_(答:);70解焦点三角形常用正余弦定理及圆锥曲线定义. 练习:设F1(-c,0)、F2(c,0)是椭圆+=1(ab0)的两个焦点,P是以F1F2为直径的圆与椭圆的一个交点,若PF1F2=5PF2F1,则椭圆的离心率为( ) A. B. C. D.71解析几何与向量综合时可能出现的向量内容:(1) 给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知与的中点三点共线;(5) 给出以下情形之一:;存在实数;若存在实数,等于已知三点共线.(6) 给出,等于已知,即是直角,给出,等于已

35、知是钝角, 给出,等于已知是锐角,(7)给出,等于已知是的平分线/(8)在平行四边形中,给出,等于已知是菱形;(9) 在平行四边形中,给出,等于已知是矩形;(10) 在中,给出,等于已知是中边的中线;九、排列、组合、二项式定理72排列数公式:=n(n-1)(n-2)(n-m1)=(mn,m、nN*),0!=1; =n!; n.n!=(n+1)!-n!; 组合数公式:=(mn),;73.(理科)两个记数原理理解的怎样?在解题时会选择吗?练习 甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。不同的安排方法共有( )12

36、3312231A. 20种B. 30种C. 40种D. 60种将1,2,3填入的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A6种B12种C24种D48种DBCA如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A96B84C60D4874.(理科)你清楚排列和组合的依据是什么?(分类相加,分步相乘,有序排列,无序组合).解排列组合的规律是什么?(相邻问题捆绑法,不邻问题插空法,定位问题优先法,多排问题单排法,多元问题分类法,选取问题先组合后排列法,至多至少问题间接法)一年级二年级三年级女

37、生373男生377370练习63. 某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A B CD75.二项式的展开式还记得吗?展开式的通项是什么?会用通项求解有关问题吗?练习 设则中奇数的个数为( )A2B3C4D5已知(是正整数)的展开式中,的系数小于120,则

38、 的展开式中的系数是( )A B C3 D4 = _。76.二项式系数的性质记书熟了吗:(1)与首末两端等距离的二项式系数相等;(2)若n为偶数,中间一项(第1项)的二项式系数最大;若n为奇数,中间两项(第和1项)的二项式系数最大;(3)注意第r1项二项式系数与第r1系数的区别;注意系数和与二项式系数之和的区别:F(x)=(ax+b)n展开式的各项系数和为f(1);奇数项系数和为;偶数项的系数和为;练习:(1)如果M=(1-x)-5(1-x)+10(1-x)-10(1-x)+5(1-x)-1,那么M等于( ) A.(x-2) B.(2-x) C.-x D.x十、概率与统计77什么是抽样方法?常

39、用的抽样方法有哪些?你能根据实际情况合理选择。练习 某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是A.简单随机抽样法B.抽签法 C.随机数表法 D.分层抽样法某校共有学生2000名,各年级男、女生人数如下表已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A24 B18 C16 D12某初级中学有学生人,其中一年级人,二、三年级各人,现要利用抽样方法抽取人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案

40、,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为,;使用系统抽样时,将学生统一随机编号,并将整个编号依次分为段.如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,250;5,9,100,107,111,121,180,195,200,265;11,38,65,92,119,146,173,200,227,254;30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是( )A、都不能为系统抽样B、都不能为分层抽样C、都可能为系统抽样D、都可能为分层抽样78.众数,中位数,平均数,方差

41、,标准差的概念,公式和性质你还清楚吗?能正确进行计算吗?你能利用统计学的观点对这些特征数作出合理解释吗?练习某企业职工的月工资数统计如下:月工资数(元)1000080005500250016001200900600500得此工资人数133820354532经计算,该企业职工工资的平均值为 元,中位数是_元,众数是_元;方差是 .如何选取该企业的月工资代表数呢?企业法人主张用平均值,职工代表主张用众数,监管部门主张用中位数;请你站在其中一立场说明理由:_。79.频率与频数之间有什么关系?你会根据频率分布表画频率分布直方图吗?你能根据样本频率分布直方图对总体做出估计吗?练习.为了调研高三教学状况,

42、某市教研机构组织全市高三5000名考生进行联考,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表: ()根据上面频率分布表,推出,处的数值分别为 , , , ; ()在所给的坐标系中画出区间80,150上的频率分布直方图; ()根据题中信息估计总体:()120分及以上的学生数;()平均分;中位数;众数;()成绩落在126,150中的概率.80.你能区分随机事件,互斥事件,对立事件吗?你会灵活地运用对立事件的概率公式求解一些复杂概率问题吗?练习:现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语从中选出通晓日语、俄语和韩语的志愿者各1名,组

43、成一个小组()求被选中的概率;()求和不全被选中的概率81.什么是几何概型?几何概型和古典概型之间有什么联系和区别?求几何概型问题的基本步骤是什么?练习66. 如图所示,墙上挂有一边长为的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是 ABCD与的取值有关82.(理科)样本的期望,方差和标准差分别反映了样本数据的什么特征?你能根据样本的期望,方差和标准差对总体的情况进行估计吗? 练习. 甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次

44、,用茎叶图记录如下:()现要从甲、乙两位学生中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由; ()若将频率视为概率,对甲同学在今后的次数学竞赛成绩进行预测,记这次成绩中高于分的次数为,求的分布列及数学期望.练习:现有两个项目,投资项目万元,一年后获得的利润为随机变量(万元),根据市场分析,的分布列为: 投资项目万元,一年后获得的利润与项目产品价格的调整有关,已知项目产品价格在一年内进行次独立的调整,且在每次调整中价格下降的概率都是.经测算评估项目产品价格的下调与一年后获得相应利润的关系如下表:项目产品价格一年内下调次数(次)一年后获得的利润(万元)设随机变量

45、表示投资项目万元一年后的利润.(I) 求的概率分布和数学期望;(II) 若,根据投资获得利润的差异,你愿意选择投资哪个项目?练习.受国际金融危机的影响,某外向型企业产品出口量严重下滑,为此有关专家提出两种解决方案,每种方案都需分两年实施;方案一:预计当年可以使企业产品出口量恢复到金融危机前的倍,第二年可以使企业产品出口量为上一年产量的倍,和的分布列分别是: 方案二:预计当年可以使企业产品出口量恢复到金融危机前的倍,第二年可以使企业产品出口量为上一年产量的倍,和的分布列分别是: 实施每种方案,第二年与第一年相互独立。令表示方案实施两年后企业产品出口量达到金融危机前企业产品出口量的倍数(1)写出的

46、分布列;(2)实施哪种方案,两年后企业产品出口量超过金融危机前企业产品出口量的概率更大?(3)不管哪种方案,如果实施两年后企业产品出口量达不到金融危机前企业产品出口量,预计可带来效益10万元;两年后企业产品出口量恰好达到金融危机前企业产品出口量,预计可带来效益15万元;企业产品出口量超过金融危机前企业产品出口量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?83. (理科)你对n次独立重复试验的模型及二项分布熟练吗?会应用吗? 二项分布的期望和方差计算公式记住了吗?了解超几何分布模型的特点吗?练习.如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投

47、掷个点,若个点中有个点落入中,则的面积的估计值为. 假设正方形的边长为2,的面积为1,并向正方形中随机投掷个点,以表示落入中的点的数目(I)求的均值;(II)求用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率附表:84什么叫相关关系?什么叫线性相关关系?你会判断两个变量之间是否存在线性相关关系吗?你能根据给出的数据求线性回归方程吗?你了解独立检验(22列联表)的基本思想,方法及其简单应用吗?相关系数0时,变量正相关; xc x输出x结束x=bx=c否是练习 右面的程序框图,如果输入三个实数,则输出的数是A. B. C. D. 为了在运行下面的程序之后得到输出,键盘输入应该是 .

48、20090424 INPUT IF THEN ELSE END IFPRINT END87.复数为实数,虚数,纯虚数的充要条件分别是什么?复数相等的充要条件是什么?能熟练进行复数的代数形式的四则运算吗?能理解复数的代数形式的加,减法运算的几何意义吗?练习:已知复数,则=( )ABCD十一 推理证明88合情推理,演绎推理的特点明白了吗?会用归纳推理和类比推理解决问题吗? 练习(1) 如下图,第n个图形是由正边形“扩展”而来,(,)。则第n个图形中共有个顶点。(2)平面内一条直线把平面分成2部分,2条相交直线把平面分成4部分,1个交点;3条相交直线最多把平面分成7部分,3个交点;试猜想:n条相交直

49、线最多把平面分成_部分,_个交点答案:(3)在等差数列中,若,则有等式 成立,类比上述性质,相应的,在等比数列中,若,则有等式 (4)观察下列等式:,请你写出一个具有一般性的等式,使你写出的等式包含了已知的等式(不要求证明),这个等式是_ sin2 +sin2(600-)+ sinsin (600-)=(5)已知,把数列的各项排成右图所示的三角形的形状,记表示第行,第列的项, 则 .十二.参数方程与极坐标系89直线,圆,椭圆的参数方程的形式熟悉吗?参数方程与普通方程的互化掌握了吗?直线的参数方程中参数的几何意义明白了吗?练习(1)9已知直线经过点,倾斜角,设与曲线(为参数)交于两点,(1)|P

50、A|。|PB|,|PA|+|PB|的值; (2)弦长|AB|; (3) 弦AB中点M与点P的距离。(2)直线(为参数)的倾斜角是( )(3)已知直线过点倾斜角为,它与曲线为参数)交于两点()写出的参数和曲线的普通方程;()当为何值时,直线与曲线相切; ()当为何值时,有最大值、最小值(4)过点作椭圆的弦。求()为弦中点时弦所在的直线方程;()是弦的三等分点时弦所在的直线方程:或(5)在平面直角坐标系中,直线的参数方程为(参数),圆的参数方程为(参数),则圆的圆心坐标为 ,圆心到直线的距离为 90直线,圆的极坐标形式熟悉吗,互相转化计算熟练了吗?伸缩变换掌握了吗?练习(1)在极坐标系中,直线的方

51、程为,则点到直线的距离为2(2)已知曲线C1:(为参数),曲线C2:(t为参数)()指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;()若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线写出的参数方程与公共点的个数和C公共点的个数是否相同?说明你的理由(3)曲线按照做确定的伸缩变换后的曲线方程为(4) 已知的图像可以看作把的图像上各点的横坐标压缩成原来的(保持纵坐标不变)而得到的,则为( ) (5)已知圆经过伸缩变换后得到椭圆,则它经过的伸缩变换为(6)在极坐标系中,过点,并且和极轴平行的直线的极坐标方程是_.(7)在极坐标系中,圆心在且过极点的圆的方程为( )A. B.

52、C. D.(8)在同一平面直角坐标系中,直线经过伸缩变换后变成直线,则( A )A B C D(二)高考励志篇-心想成功,师生共勉昨天的一切已经不可改变,但今天的努力可以改变昨天的轨迹!做好今天的每一件事,做对今天的每一道题,就能描绘出自己辉煌的人生前景!努力吧!只要保持着一份执者,坚守着一个信念,不怕失败,不言后悔,就一定能看到希望地曙光,催开成功的花朵!失败是什么?没有什么,只是更走近成功一步;成功是什么?就是走过了所有通向失败的路,只剩下一条路,那就是成功的路。只有一条路不能选择那就是放弃的路;只有一条路不能拒绝那就是成长的路。失败是什么?没有什么,只是更走近成功一步;成功是什么?就是走

53、过了所有通向失败的路,只剩下一条路,那就是成功的路。我们命定的目标和道路,不是享乐,也不是受苦。而是行动,在每个明天, 都超越今天,跨出新步。不要空想未来,不管它多么令人神往, 不要留恋过去,要把逝去的岁月埋葬。 行动起来吧,就在生命的此刻行动! 行动吧趁着每一个今天让生命之舟乘风破浪! -朗费罗笑傲高三 失败与成功多年蕴蓄志远功深日日攻坚获益; 当你一卷摊开神驰笔畅堂堂游刃有余。 播下希望的种子,辛勤浇灌。壮志凌云 当然承历史底蕴究天人际理欲上苍穹揽星去; 期待收获的是成功。怀瑾瑜憧憬展卷帙才华即从蟾宫摘桂回。 然而 笑书人生 有时事违人愿十年磨剑白刃生寒涔汗泪; 失败之神紧追不舍与你想粉逢

54、。今昔纵毫冰心着意写春秋。 “这太不公平,我付出了艰辛的劳动!”意气风发 诚然时光如梭看我少年学子六月追风去 你废寝忘食,涉猎丛书,云帆直挂令那美丽人生明朝入眼来 无疑师生同心 你奋斗不息,渴望成功。知天文通地理莘莘学子携手共进鱼跃龙门 但是培栋梁育英才代代园丁含辛茹苦花香桃林 谁能保证报偿的天平上不是失败取代成功?前程似锦 也许,勇攀书山甘洒汗水放飞心中梦想 没有崇山峻岭,长江不会波涛汹涌;泛游学海竞逐群雄一朝金榜题名 也许,没有失败的点缀,成功失去了迷人的彩虹。失败与成功孪生弟兄。失败既来作客成功-必在途中。抹去伤心的泪水,扶平心头的伤痛,重飞吧,通向成功的道路只有一条-锲而不舍的抗争。(

55、三)迎考心理篇 - 让我轻轻地告诉你警惕高考前的10种心理问题1.考前焦虑症:如一想到考试就紧张激动,呼吸加快,心跳加剧,肌肉紧张,甚至身体也不由自主地抖动。这个时候,考生一定要“笑对高考”,“快乐的心情是成功的一半”。可以找一两件高兴的事去做,也可以讲述一些发生在身边的愉快故事,与家长在饭桌旁讲一些高品位的幽默小品。这样,整个家庭气氛就会变得轻松活跃。或者有意识地做些家务,如整理自己的卧室、扫扫地、擦擦桌子等。陪父母聊聊天,出去散散步。也可以适当地去找同学轻松轻松,因为有着共同奋斗目标的同龄人在一起可以互相鼓励,找到慰藉。2.失去自信心,怀疑自己的能力,觉得自己一定考不好。这类的学生主要是自

56、信心不足,重要原因是对学习的知识不能扎实地掌握,还存在知识空白点。这时要做到根据实际情况,尽可能夯实基础知识。另外也要注意回忆自己的优点和考试的成功经验。早晨起床时马上暗示自己心情愉快、有信心,克服自卑情绪。或以伟人、杰出人物为榜样。“榜样的力量是无穷的”,优秀人物,遇险不惊、沉着机智是他们的优点,这正是在高考临场中要树立的典范,在心中树立他们的形象,也能帮助自己以良好的心态参加高考。3.越是临近考试,越是觉得知识生疏;越是拼命复习,越是觉得掌握不扎实。这是心绪紧张的具体表现,属于正常现象。这种状况的根本原因是疲劳战术的恶果,必须缓和绷得太紧的神经。具体方法为:适当参加文体活动.但不能过于剧烈

57、;一旦感觉到学习得特别疲劳了,立即放下书本,休息锻炼。即使在这时,头脑里仍然要注意对知识系统的完整梳理和把握。4.心情烦躁,容易发脾气,对很小的事情也容易发火。学生在疲惫的情况下,会出现一些不良情绪,有时也很容易发火。内向的考生这个时候可出去散步,看看风景,平复心情;外向的考生在不伤害他人和自身的情况下发泄一下,如大笑、大哭、打枕头等,但要有度,否则引起情绪失控,只会适得其反。5.怀疑自己得了“健忘症”,不仅对所学知识常常遗忘,日常生活也出现丢三落四的现象。这时需要暂时放下所有功课,做一些放松训练,以减轻直至消除这些不良反应。具体做法是:全身放松地坐在一张软椅上,脚撑着地,两臂自然下垂,双眼微

58、合,深呼吸10次。吸气时收小腹,绷紧身体。呼气时要慢慢放松下来,心中默念:我的左手变得很沉重,我的右手变得很沉重就这样把左右手、臂,眼、脚都缓慢地默念几遍,同时专心体验各部位的沉重和松弛感。然后默念:我现在开始全身放松,我感到非常轻松、非常的舒服,我的心情很愉快为配合训练,也可选一些轻松舒缓的乐曲作为背景音乐。6.身体状况出现问题,如呕吐、拉肚子、过敏等。当身体出现不适时,一定要注意合理饮食和保证充足的睡眠。不用刻意地吃得特别好,如果肠胃不适应的话,反而会收到负效果。考试前既不可空腹,也不可过饱。要忌暴饮暴食,注意饮食卫生。每天定时睡觉、起床,调整好“生物钟”也是保证最佳身体状况的方法。很多身

59、体不适的原因也有心理紧张的因素,可以参照消除紧张感的方法使自己放松,心理上轻松了,身体上的压力也能减轻不少。女生痛经也须提前解决好。7.失眠,白天没有精神。睡觉时,不要硬逼自己入睡,可以用一些小方法诱导自己睡觉。如上床后熄灯,躺下仰卧,做一次舒畅的深吸气,然后徐缓地往外呼气。在第二次吸气时,默默地对自己说:“放松,放松,”这样做的目的是要反复地用一些不致引起自己情绪激动的词语和景象来占据自己的思想。用这个方法来催眠。不可急躁,不应急于求成。必要时可考虑在医生指导下用药.8.怯场,一进考场就感到巨大的压力和恐惧感,不能放松下来。学生在考试前应该做好精神、物质上的准备工作,这样有利于放松紧张心情。

60、精神准备除了要凋整好情绪外,也可以适当做些“幻想式的应考法”测试,暗示自己能够沉着、成功地通过考试。还应熟悉到考点的行车线路,考场所在的学校、楼层、教室,考场位置和自己的座次、编号甚至厕所的位置。看考场后,心里不断暗示自己:我的座位真好,我一定能正常发挥。这些准备工作都能缓解怯场心理。9.注意力难以集中,走神,容易被外界的刺激所吸引。当注意力集中得不是很好时,最好先放松一下而不是拼命地去看书,适当放松一下再回到桌前看书时,会发现你的注意力比没放松前强很多。有些考生复习得很累了,在有厌倦心理的情况下,注意力就难以集中。这时应该调整自己的心态,做一些比较容易做的题目,不要做非常难或怪的题目,然后从

61、易到难,精神状态会更好一些。10.一紧张就想上厕所,在考场上也总想上厕所。这种现象是紧张造成的。考前几天若能每天闲侃、散步或娱乐一阵,保持心情愉快,有利于预防应考尿频现象的发生。同时控制饮水量,这对降低排尿频率大有帮助。在考试当天,早、午餐少喝或不喝饮品,少喝一点菜汤。考完后则可适量饮矿泉水,以供新陈代谢所需。另外,在饮食中适当降低含盐量,以免因口渴而饮水过多。高考心态调节16字诀“强化信心、优化情绪、进入状态、充分发挥”一强化信心 信心是考生成功的精神支柱。如果没有高考成功的信心,高考就不太可能成功。怎么强化信心呢? (1)高考目标期待适当。考生要根据自己平时的学习实力和自己心态的情况,实事

62、求是地确定自己的高考目标。一般说来,根据考前一模、二模、三模考分的平均分确定高考成绩的期待值。 如果目标定位过高,就会为难以达到目标而增加考试焦虑;如果目标定位太低,又会影响潜能的发挥。 (2)不要攀比 。每个考生的学习实力与心态状况不一样,确定的高考期待值也不一样。有的考生盲目与比自己学习实力强的同学攀比,这样会挫伤自己的信心。对考生来说只要在高考中发挥出自己平时水平就是成功。 (3)加强实力。 考试信心是建立在考试实力基础上的。因此,加强复习,提高实力是强化信心的重要措施。 不打时间战,不挑灯夜战,注意提高复习效率,建立知识网络与体系,学会利用已有的知识解决问题,有助于强化高考的信心。 (

63、4)不要迷信。 考试成功与否,由自己平时学习实力与高考时的心态决定,世界上不存在超自然的力量影响考试的成绩。考生要相信自己的力量,千万不要去求神、拜佛、算命。 (5)积极自我暗示。 积极的暗示能增强人的信心,消极暗示能降低人的信心。考试前受到的消极暗示很多,因此特别要注意消除消极暗示影响。 每个考生的心态不同,在不同情景下心理的变化不尽相同,因此,要根据自己的情况运用积极暗示进行心理调整,强化信心。可以把写上积极暗示的字条放在桌子上,如“我有学习能力,我一定能成功!” 树立“我要成功”,“成功是我”,“必胜是我”的信念。 (6)挺胸抬头,步伐加快。 人的内心体验与行为动作相一致。人在高兴、充满

64、信心时就会挺胸抬头,走起路来很有精神,步伐稍快而有力;人在沮丧、缺乏信心时,就会无精打采,走路缓慢无力。考生可利用人的内心体验和自己的行为动作一致的原理,每天走路挺胸抬头,步伐稍快。经常这样做,就会增强自己的信心。 二优化情绪 积极的情绪能够提高高考的成绩,消极的情绪能降低高考的成绩。调整好情绪是高考心态调节的重要环节。 什么是高考成功的良好情绪呢? 心平气和 情绪饱满 控制情绪能力较好在高考前和高考中考生会遇到很多困难甚至挫折,情绪一时有波动在所难免,但考生要具有较好的情绪控制能力。 考生怎么优化情绪呢? (1)以平常心对待高考 。无论在考前和考中都以平常心对待高考,这样心情自然稳定。 (2

65、)不要把考试焦虑看得太重 。考生在考试前和考试中会出现考试焦虑现象,即:有些紧张,有些不安,有些着急。这对考生来讲是难免的。考生存在中等程度焦虑与严重程度焦虑对考生的发挥产生很大的负面影响。轻度考试焦虑在某种意义上还会促进考生发挥自己的潜力。 考生在考试前和考试中存在轻度的考试焦虑是相当普遍的。可是有些考生把自己存在的轻度考试焦虑看得很重,误认为自己紧张不安的情绪会对考试产生很严重的影响,却不知其他考生也大多存在像你一样程度的考试焦虑。谁过分看重考试焦虑,谁就会受到影响。 (3)积极的自我想象. 积极的自我想象能唤起人的良好的情绪。考生在复习过程中,在进入考场的时候可运用积极的自我想象,焕发与

66、强化自己良好的情绪,防止消极情绪的产生。考生可根据自己的情况和过去自己成功的经验选择积极自我想象的内容。 (4)学会深呼吸。(5)建议用自己右手大拇指按摩自己的内关穴,大体是戴表带后面扣眼的地方,顺时针按摩36次很有效果。(6)语言诱导精神放松法,自己默念头脑松体会两秒钟,按照从上到下的顺序,从头到脚,这样不断默念,不断的体会放松有助于缓解情绪。(7)积极向上法。考生心情不好的时候想想自己18年的生活当中的愉快事情、开心的事情,把积极情绪调动起来。三.进入状态: (1)不要自我加压,现在有不少考生除了做自己老师的卷子之外还做很多其他的试卷。现在只要回归基础、回归课本就足够了。 (2)调节生物钟

67、,高考是白天考试,现在不少同学是夜猫子,建议考生现在开始每天晚上11点半左右睡觉,这样白天精神比较充足。 (3)体验各种考试的不同情景,体验考试的感受,高考时会顺利适应考场。 (4)高考前有一段时间放假,有的考生这个时间只看书、只看笔记,不做卷子,结果高考找不到感觉,建议考生一定每天做卷子,做过做的卷子,一做就有信心,达到练练手、热热身,找找感觉。不要做新的难的卷子挫折自己的信心。 (5)考前按正常的习惯睡觉,晚上不要提前睡觉,宁肯一夜不睡觉,也不要吃安眠药。四.充分发挥: (1)战略上藐视卷子,战术上重视卷子。特别对简单的题一定不要马虎。 (2)运用考试策略和技巧。第一,在写字清楚的基础上力

68、求快,高考是考时间,时间就是分数,一定要在试卷上写字,第二,一定要留五分钟到十分钟检查卷子。第三,看题做到三个字“准、快、全”以准为基础,没有准越快错的越多。第四,利用发散性思维,一道题一个思路解决不了换一个思路。第五,要建立和体系,把所有点融会贯通成为一个整体,到高考的时候每一点、一刺激,其他的点都亮起来了。让你心情舒畅八法人生旅途上,曲折、磨难和逆境多于坦途、顺利和成功。如何摆脱精神枷锁,舒心八法不妨一试。 想一想-换个角度来讲,挫折和失败,是对人意志、决心和勇气的锻炼。人是在经过了千锤百炼才成熟起来的,重要的是吸取教训,不犯或少犯重复性的错误。 走一走-到野外郊游,到深山大川走走,散散心

69、,极目绿野,回归自然,荡涤一下胸中的烦恼,清理一下浑浊的思绪,净化一下心灵尘埃,唤回失去的理智和信心。 比一比-与同事、同乡、同学、好友相比,虽说比上不足,但比下有余。及时调整心态,以保持心理平衡。不因小败而失去信心,不因小挫而伤锐气。 放一放-如果不是急事大事,索性放下不去管它,过几天再说,或许会有个更清晰的认识,更合理周密的打算。 乐一乐-想想开心的事、可笑的事;或拿本有趣的书,读几段令人开怀大笑或幽默风趣的章节。 唱一唱-一首优美动听的抒情歌,一曲欢快轻松的舞曲或许会唤起你对美好过去的回忆,引发你对灿烂未来的憧憬。 看一看-一场自己喜爱的体育比赛.音乐会的录象.实况转播, 或许会让你忘记烦恼,精神振奋。 高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3