ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:260.67KB ,
资源ID:1025728      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1025728-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(福建省漳州市2020届高考数学适应性测试(居家分散测试)试题 文(PDF)参考答案.pdf)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

福建省漳州市2020届高考数学适应性测试(居家分散测试)试题 文(PDF)参考答案.pdf

1、漳州市 2020 届高三毕业班高考适应性测试文科数学参考答案及评分细则第 1 页(共 8 页)漳州市 2020 届高中毕业班高考适应性测试 文科数学参考答案及评分细则 评分说明:1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。2对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。3解答右端所注分数,表示考生正确做到这一步应得的累加分数。4只给整数分数。选择题和填空题不给中间

2、分。一、选择题:每小题 5 分,满分 60 分 1A 2D 3C 4D 5A 6D 7B 8C 9B 10A 11D 12A【选择题详解】1A【解析】依题意得 1,3U A ,()1U AB 故选 A 2D【解析】通解 因为2iz,所以2iz ,所以(2i)(2i)4z z 22i2ii5,故选 D 优解222|215z zz,故选 D 3C【解析】由题意,得(2)202aa+b=a+a b=,即22 a ba,所以cos,|a ba ba b222142 aa,所以23a b,故选 C 4D【解析】因为7a 是3a 与9a 的等比中项,所以2739aa a,又数列 na的公差为-2,所以21

3、11(12)(4)(16)aaa,解得120a,故20(1)(2)222nann,所以1101010()5(202)1102aaS 5A【解析】依次读取的数据为 253,313,457,860(超过 800,舍去),736,253(与前面重复,舍去),007,所以抽到的第 5 名员工的编号是 007,故选 A.6D【解析】因为1C 的离心率为2,一条渐近线为l,所以不妨设:l yx,与2C:24yx联立可求得(4,4)P,又(1,0)F,所以|5PF,故选 D.7B【解析】设|()2 sin 2xf xx,其定义域关于坐标原点对称,漳州市 2020 届高三毕业班高考适应性测试文科数学参考答案及

4、评分细则第 2 页(共 8 页)又|()2sin(2)()xfxxf x,所以()yf x是奇函数,故排除选项 C,D;令()0f x,所以sin 20 x,所以 2xk(k Z),所以2kx(k Z),故排除选项 A故选 B 8C【解析】由2210(sin2cos)()2,可得2222sin4cos4sincos10sincos4,进 一 步 整 理 可 得23tan8tan30,解 得 tan3 或1tan3 ,于 是22tan3tan 21tan4 9B【解析】因为01ab,所以10aabbaa,loglog1bbab,01a,所以 11a,1log0ab 综上:1loglogabbaa

5、bab,故选 B.10A【解析】函数()sinyf xx在0 x,2x,x 处的函数值分别为 0)0(1 fy,1)2(2fy,0)(3fy,故212121xxyyk,22323xxyyk,213124xxkkk,故2222444()()2f xxx xxx,即xxx44sin22,所以2524524)52(452sin22.故选 A 11D【解析】设 ABc,则 ADc,23cBD,43cBC,在 ABD 中,由 余 弦 定 理 得2222413cos23cccAc,则2 2sin3A,在ABC 中,由正弦定理得43sinsin2 23ccBCCA,解得6sin6C BACD漳州市 2020

6、 届高三毕业班高考适应性测试文科数学参考答案及评分细则第 3 页(共 8 页)12A【解析】分别取11DC,1CC 中点 E,F,易知平面 EFM 平行于平面BDA1,又平面 过点 M,平面 平行于平面BDA1,所以平面 EFM 与平面 是同一个平面,设11EMACG,则平面 把三棱柱111ABCA B C分成的两个几何体中,体积较小的几何体为三棱锥1FGMC,所以所求几何体的体积 11113F GMCGMCVSFC111 1()3 2EMCSFC 21 111()16 2248,故选 A 二填空题:每小题 5 分,共 20 分 13 4 149)8ln(xx 15 17 16 2 55【填空

7、题详解】13 4【解析】由已知,得直线7ykx过圆C 的圆心(3,5)C,所以 537k,所以4k .149)8ln(xx【解析】因为)()4(xfxf,所以(8)(4)4)(4)f xfxf x ()()f xf x ,所以 8 是()f x 的周期,又因为)(xf是定义在 R 上的偶函数,当)2,0(x时,1ln)(xxxf,所以当)8,6(x时,(8,6)x ,8(0,2)x,()()(8)ln(8)(8)1f xfxfxxxln(8)9xx.15 17【解析】因为圆锥底面半径为 2,高为 1,所以圆锥的体积21142133V ,因为圆柱底面半径为 2,高为 2,所以圆柱的体积22228

8、V,所以所求事件的概率为11217VVV.A1 B1 C1 D1 A B CDM E F G 漳州市 2020 届高三毕业班高考适应性测试文科数学参考答案及评分细则第 4 页(共 8 页)16 2 55【解析】画出 C1 和 C2 如图,由于 C1 关于原点 O 对称,所以 P 关于 O 对称的点 P也在 C1 上,又 M 为 PQ 的中点,所以1|2OMP Q,设 P到直线 l:240 xy的最小距离为 d,则min1|22OMdd,对于3133:()22Cyxxx,由2312yx,得1x ,结合图可知,当(1,0)P 时,P到直线 l:240 xy的距离最小,所以|204|2 555d,所

9、以min|OM 2 55.三、解答题:共 70 分。解答应写出文字说明,证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分。17解:(1)由nS=22nn,得 当n=1 时,113aS;1 分 当2n 时,1nnnaSS 2222(1)(1)41nnnnn,*nN.3 分 又当1n 时,上式也成立,所以41nan,4 分 由24log3nnab,得12nnb,*nN.6 分(2)由(1)知1(41)2nnna bn,*nN 7 分 所以2137 2 11 2.41 2nnTn ,8 分 2323 27

10、211 2.41 2nnTn ,9 分 21241 234(22.2)nnnnTTn 10 分 12(12)(41)23412nnn(45)25nn(45)25nnTn,*nN 12 分 4225C2C1PMOPQ漳州市 2020 届高三毕业班高考适应性测试文科数学参考答案及评分细则第 5 页(共 8 页)18解:(1)如图,连结1AC,交1AC 于点O,连结OM 1 分 因为三棱柱111CBAABC 的侧面11AAC C 是平行四边形,所以O 为1AC 中点,因为 M 为11BA的中点,所以1/OMB C 3 分 又因为1OMAMC 平面,11B CAMC 平面,所以11/B CAMC平面

11、5 分(2)过1A 作1A HAM于 H,6 分 因为1AA 平面111A B C,1C M 平面111A B C,所以11C MAA,因为111A B C 是正三角形,M 为11BA的中点,所以111C MA B,又1111AAA BA,111,AA A B 平面11AA B B,所以1C M 平面11AA B B,又1A H 平面11AA B B,所以11A HC M,8 分 又因为1AMC MM,1,AM C M 平面1AMC,所以1A H 平面1AMC 于 H,所以 H 为点1A 在平面1AMC 内的射影.9 分 因为三棱柱侧面展开图是矩形,且对角线长为4 10,侧棱14BB,所以三棱

12、柱底面周长为22(4 10)412,10 分 又因为三棱柱的底面是正三角形,所以底面边长114A B,12A M,在1RtAA M中,14AA,22112 5AMAAA M,由射影定理,有21AAAH AM,即242 5AH,所以8 55AH.12 分 19解:(1)区间中值依次为:0.05,0.15,0.25,0.35,0.45,0.55,取值概率依次为:0.10,0.20,0.25,0.30,0.10,0.05,H 漳州市 2020 届高三毕业班高考适应性测试文科数学参考答案及评分细则第 6 页(共 8 页)平均收益率为 0.050.10+0.150.20+0.250.25+0.350.3

13、0+0.450.10+0.550.05 2 分 41(50300625 1050450275)0.27510 3 分(2)25303845521903855x,4 分 7.57.16.05.64.8316.255y,5 分 所以10.06.20.1038b,6 分 当每份保单的保费为20 x元时,销量为100.1yx,7 分 则保费收入为()(20)(100.1)f xxx 2220080.13600.1(40)xxx万元 当40 x 元时,保费收入最大为 360 万元,保险公司预计获利最大为 3600.275=99 万元 20解:(1)由题意得,1c,椭圆的两焦点为(1,0)和(1,0),1

14、 分 因为点)22,1(在椭圆C 上,所以根据椭圆定义可得:222211222a,2 分 所以2a,所以1222cab,4 分 所以椭圆 E 的标准方程为1222 yx 5 分(2)解:设11(,)A x y,11(,)B xy,22,C xy,22,Dxy,则12(,)P x y,221112xy,222212xy,12|yx 7 分 消去21,xy,得2212212xy,8 分 所以点 P 在双曲线22:212xTy 上,9 分 漳州市 2020 届高三毕业班高考适应性测试文科数学参考答案及评分细则第 7 页(共 8 页)因为T 的两个焦点为10(0,)2M,10(0,)2N,实轴长为2,

15、11 分 所以存在两定点10(0,)2M,10(0,)2N,使得|PMPN为定值2.12 分 21(1)证明:)(xf的定义域为(0,+),当 01 时,1e x,11 x,01e)(xxfx,所以)(xf在(1,+)上单调递增,所以当 x1 时,0e)1()(fxf 4 分 综上,0)(xf成立 5 分(2)解:若 a1,则当 x0 时,0 ae x,6 分 所以由0)(lne()(axaxgx,得0ln ax,即axe;由0)(lne()(axaxgx,得0ln ax,即axe0,所以)(xg的增区间为(ae,+),减区间为(0,ae)8 分 若 a1,则 lna0,由(1)知0lne)(

16、aafa,即aalne,9 分 所以由0)(lne()(axaxgx,得axln0或axe;由0)(lne()(axaxgx,得axaeln,所以)(xg的增区间为(0,aln),(ae,+),减区间为(aln,ae)12 分(二)选考题:共 10 分。请考生在第 22、23 两题中任选一题作答。如果多做,则按所做第一个题目计分。22解:(1)因为曲线 C1 的参数方程为,sin,cosyx 所以曲线 C1 的普通方程为122 yx,2 分 将变换 T:,2yyxx即,21yyxx代入122 yx,得1422 yx,4 分 所以曲线 C2 的普通方程为1422 yx 5 分(2)因为 m1,所

17、以 C3 上的点 A(0,-m)在椭圆 C2:1422 yx外 6 分 漳州市 2020 届高三毕业班高考适应性测试文科数学参考答案及评分细则第 8 页(共 8 页)当 x0 时,曲线 C3 的方程化为mmxy,代入1422 yx,得0)1(48)14(2222mxmxm,(*)因为)1(4)14(464224mmm0)13(162m,所以方程(*)有两个不相等的实根 x1,x2,又01482221mmxx,014)1(42221mmxx,所以 x10,x20,所以当 x0 时,曲线 C2 与曲线 C3 有且只有两个不同的公共点,8 分 又因为曲线 C2 与曲线 C3 都关于 y 轴对称,所以

18、当 x0 时,曲线 C2 与曲线 C3 有且只有两个不同的公共点,9 分 综上,曲线 C2 与曲线 C3:y=m|x|-m 的公共点的个数为 4 10 分 23解:(1)当 m=5 时,0)(xf05|13|2|xx,05132,31xxx或,05132,231xxx或,05132,2xxx 3 分,1,31xx或,1,231xx或,23,2xx1 x或21 x或2x 1 x或1x,所以不等式0)(xf的解集为x|1x或1x 5 分 (2)由已知,知当41x时,不等式0|14|16)(xxf,即|14|16|13|2|xxxm恒成立,6 分 令|14|16|13|2|)(xxxxg,则因为|14|16|)13()2(|)(xxxxg|14|16|14|xx 7 分 8|14|16|14|2xx,8)43(g,9 分 所以8)(min xg,所以 m8,即实数 m 的取值范围为(,8)10 分

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3