ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:909KB ,
资源ID:1025413      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1025413-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(湖北省部分重点中学2014届高三第一次联考 数学理试题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

湖北省部分重点中学2014届高三第一次联考 数学理试题 WORD版含解析.doc

1、湖北省部分重点中学2014届高三第一次联考数学理科试题一、选择题:本大题共有10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。请把它选出后在答题卡上规定的位置上用铅笔涂黑.1.已知两个集合,则( ).A. B. C. D. 2.若是纯虚数,则=( )A. B. C. D. 3.已知命题:所有素数都是偶数,则是( )A.所有的素数都不是偶数 B.有些素数是偶数 C.存在一个素数不是偶数 D. 存在一个素数是偶数4.设,函数的导函数为,且是奇函数,则( ) A. 0 B. 1 C. 2 D. 5.三个实数成等差数列,首项是9,若将第二项加2、第三项加20可使得这三

2、个数依次构成等比数列,则的所有取值中的最小值是( )A. 1 B. 4 C. 36 D. 496.已知函数的定义域为,值域为.下列关于函数的说法:当时,;将的图像补上点,得到的图像必定是一条连续的曲线; 是上的单调函数;的图象与坐标轴只有一个交点.其中正确命题的个数为( )A. 1 B. 2 C. 3 D. 47.等比数列的前项和为,若,成等差数列,则其公比为 ( )A. B. C. D. 8. 已知函数是定义在上的偶函数,当时,则函数的零点个数为( )A. 4 B. 6 C. 8 D. 109.设的内角A,B,C所对的边分别为,若三边的长为连续的三个正整数,且,则为( )A4:3:2 B5:

3、4:3 C6:5:4 D7:6:5【答案】C【解析】试题分析:,又、为连续的三个正整数,设,(),由于,则,即,解得,由正弦定理得,选C.考点:正弦定理、余弦定理、二倍角的正弦公式.10.在所在的平面内,点满足,且对于任意实数,恒有, 则 ( )A. B. C. D. ,故需要,即,为的中点,又是边上的高,是等腰三角形,故有,选C.考点:共线向量,向量的数量积.二、填空题:本大题共5小题,每小题5分,满分25分.11.设球的半径为时间的函数,若球的体积以均匀速度增长,则球的表面积的增长速度与球半径的乘积为 .12. 在ABC中,边 角,过作,且,则 .【答案】【解析】试题分析:依题意, ,由余

4、弦定理得,由三角形的面积公式得13.已知两个实数满足且,则三个数从小到大的关系是 (用“”表示).考点:函数、与、及的图象性质.14.已知,各项均为正数的数列满足,若,则 .15.已知函数.如果存在实数,使函数,在处取得最小值,则实数的最大值为 .【答案】【解析】试题分析:依题意,令,在区间上恒成立,即 三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分12分)已知函数.(1)求的最小正周期和最小值;(2)若不等式对任意恒成立,求实数的取值范围.17.(本小题满分12分)如图,在四棱锥中,底面为菱形,为的中点.(1)若,求证:平面平面;(2)

5、点在线段上,若平面平面,且,求二面角的大小.,18.(本小题满分12分)设等差数列的前项和为且(1)求数列的通项公式;(2)若,数列满足:,求数列的前项和19.(本小题满分12分)已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如图所示,能听到声音,当且仅当A与B中有一个工作,C工作,D与E中有一个工作;且若D和E同时工作则有立体声效果. (1)求能听到立体声效果的概率;(2)求听不到声音的概率.(结果精确到0.01)20.(本小题满分13分)已知椭圆:()的右焦点,右顶点,右准线且(1)求椭圆的标准方程;(2)动直线:与椭圆有且只有一个交点,且与右准线相交于点,试探究在平面直角坐标系内是否存在点,使得以为直径的圆恒过定点?若存在,求出点坐标;若不存在,说明理由21.(本小题满分14分)设(1)若,求最大值;(2)已知正数,满足.求证:;(3)已知,正数满足.证明: (2)构造函数,利用导数法证明在在上递增,在上递减.由于函数的极大值为,时,(3)利用数学归纳法证明如下: 当时,命题显然成立; 假设当时,命题成立,即当时,.则当,即当时,又假设

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3