1、课时跟踪检测(三十三)数列求和一抓基础,多练小题做到眼疾手快1已知等差数列an的前n项和为Sn,若S39,S525,则S7()A41B48C49 D56解析:选C设SnAn2Bn,由题知,解得A1,B0,S749.2数列12n1的前n项和为()A12n B22nCn2n1 Dn22n解析:选C由题意得an12n1,所以Snnn2n1.3(2016江西新余三校联考)数列an的通项公式是an(1)n(2n1),则该数列的前100项之和为()A200 B100C200 D100解析:选D根据题意有S1001357911197199250100,故选D.4设数列an的前n项和为Sn,且ansin,nN
2、*,则S2 016_.解析:ansin,nN*,显然每连续四项的和为0.S2 016S45040.答案:05(2015陕西质检)已知正项数列an满足a6aan1an.若a12,则数列an的前n项和为_解析:a6aan1an,(an13an)(an12an)0,an0,an13an,又a12,an是首项为2,公比为3的等比数列,Sn3n1.答案:3n1二保高考,全练题型做到高考达标1(2015阳泉质检)已知数列an的前n项和为Sn,并满足:an22an1an,a54a3,则S7()A7 B12C14 D21解析:选C由an22an1an知数列an为等差数列,由a54a3得a5a34a1a7,所以
3、S714.2已知an是首项为1的等比数列,Sn是an的前n项和,且9S3S6,则数列的前5项和为()A.或5 B.或5C. D.解析:选C设an的公比为q,显然q1,由题意得,所以1q39,得q2,所以是首项为1,公比为的等比数列,前5项和为.3已知数列an的通项公式是an2n3n,则其前20项和为()A380 B400C420 D440解析:选C令数列an的前n项和为Sn,则S20a1a2a202(1220)323420.4已知数列an中,an4n5,等比数列bn的公比q满足qanan1(n2)且b1a2,则|b1|b2|b3|bn|()A14n B4n1C. D.解析:选B由已知得b1a2
4、3,q4,bn(3)(4)n1,|bn|34n1,即|bn|是以3为首项,4为公比的等比数列|b1|b2|bn|4n1.5.的值为()A. B.C. D.解析:选C,.6(2016山西四校联考)设数列an满足a2a410,点Pn(n,an)对任意的nN*,都有向量(1,2),则数列an的前n项和Sn_.解:Pn(n,an),Pn1(n1,an1),(1,an1an)(1,2),an1an2,an是公差d为2的等差数列7又由a2a42a14d2a14210,解得a11,Snn2n2.答案:n27对于数列an,定义数列an1an为数列an的“差数列”,若a12,an的“差数列”的通项公式为2n,则
5、数列an的前n项和Sn_.解析:an1an2n,an(anan1)(an1an2)(a2a1)a12n12n2222222n222n.Sn2n12.答案:2n128(2016江西八校联考)在数列an中,已知a11,an1(1)nancos(n1),记Sn为数列an的前n项和,则S2 015_.解:an1(1)nancos(n1)(1)n1,当n2k时,a2k1a2k1,kN*,S2 015a1(a2a3)(a2 014a2 015)1(1)1 0071 006.答案:1 0069(2014湖南高考)已知数列an 的前n 项和Sn,nN* .(1)求数列an 的通项公式;(2)设bn2an(1)
6、nan ,求数列bn 的前2n 项和解:(1)当n1时,a1S11;当n2时,anSnSn1n.故数列an的通项公式为ann.(2)由(1)知,ann,故bn2n(1)nn.记数列bn的前2n项和为T2n,则T2n(212222n)(12342n)记A212222n,B12342n,则A22n12,B(12)(34)(2n1)2nn.故数列bn的前2n项和T2nAB22n1n2.10已知数列与,若a13且对任意正整数n满足an1an2,数列的前n项和Snn2an.(1)求数列,的通项公式;(2)求数列的前n项和Tn.解:(1)因为对任意正整数n满足an1an2,所以是公差为2的等差数列又因为a
7、13,所以an2n1.当n1时,b1S14;当n2时,bnSnSn1(n22n1)(n1)22(n1)12n1,对b14不成立所以数列的通项公式为bn(2)由(1)知当n1时,T1.当n2时,所以Tn.当n1时仍成立,所以Tn.三上台阶,自主选做志在冲刺名校1(2016云南师大附中检测)已知数列an中,a12,a2nan1,a2n1nan,则an的前100项和为_解析:由a12,a2nan1,a2n1nan,得a2na2n1n1,a1(a2a3)(a4a5)(a98a99)223501 276,a1001a501(1a25)2(12a12)14(1a6)13(1a3)12(1a1)13,a1a
8、2a1001 276131 289.答案:1 2892已知数列an的前n项和Sn3n,数列bn满足b11,bn1bn(2n1)(nN*)(1)求数列an的通项公式;(2)求数列bn的通项公式;(3)若cn,求数列cn的前n项和Tn.解:(1)Sn3n,Sn13n1(n2),anSnSn13n3n123n1(n2)当n1时,23112S1a13,an(2)bn1bn(2n1),b2b11,b3b23,b4b35,bnbn12n3(n2)以上各式相加得bnb1135(2n3)(n1)2(n2)b11,bnn22n(n2)又上式对于n1也成立,bnn22n(nN*)(3)由题意得cn当n2时,Tn32031213222332(n2)3n1,3Tn92032213322342(n2)3n.相减得2Tn623223323n12(n2)3n.Tn(n2)3n(332333n1)(n2)3n.TnTn(nN*)