ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:162KB ,
资源ID:1023585      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1023585-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021高考数学人教版一轮复习多维层次练:第三章 第2节第3课时 导数在不等式中的应用 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021高考数学人教版一轮复习多维层次练:第三章 第2节第3课时 导数在不等式中的应用 WORD版含解析.doc

1、多维层次练19A级基础巩固1函数f(x)ln xa的导数为f(x),若方程f(x)f(x)的根x0小于1,则实数a的取值范围为()A(1,) B(0,1)C(1,) D(1,)解析:由函数f(x)ln xa可得f(x),因为x0使f(x)f(x)成立,所以ln x0a,又0x01,ln x01.答案:A2已知函数f(x)1ln x,若存在x00,使得f(x0)0有解,则实数a的取值范围是()Aa2 Ba3 Ca1 Da3解析:函数f(x)的定义域是(0,),不等式1ln x0有解,即axxln x在(0,)上有解令h(x)xxln x,则h(x)ln x,由h(x)0,得x1.当0x0,当x1

2、时,h(x)0,且23,23,则3a2b,c18a,依题意f(x)的极小值为f(3)27a9b3c1798.解得a2,b3,c36.答案:C4(2020惠州调研)设xR,函数yf(x)的导数存在,若f(x)f(x)0恒成立,且a0,则下列结论正确的是()Af(a)f(0)Ceaf(a)f(0)解析:设g(x)exf(x),则g(x)exf(x)f(x)0,所以g(x)在R上单调递增由a0,得g(a)g(0),即eaf(a)f(0)答案:D5(2019天津卷改编)已知aR,设函数f(x)若关于x的不等式f(x)0在x0,)上恒成立,则a的取值范围为()A0,1 B0,2C0,e D1,e解析:当

3、0x1时,f(x)x2aa,由f(x)0恒成立,则a0,当x1时,由f(x)xaln x0恒成立,即a恒成立设g(x)(x1),则g(x).令g(x)0,得xe,且当1xe时,g(x)e时,g(x)0,所以g(x)ming(e)e,所以ae.综上,a的取值范围是0ae,即0,e答案:C6若对任意的a,b满足0abt,都有bln aaln b,则t的最大值为_解析:因为0abt,bln aaln b,所以0,解得0x0,设F(x),则不等式F(x)0,所以F(x)0.即F(x)在定义域上单调递减由F(x)1.所以不等式F(x)的解集为(1,)答案:(1,)8函数f(x)x2sin x,对任意的x

4、1,x20,恒有|f(x1)f(x2)|M,则M的最小值为_解析:因为f(x)x2sin x,所以f(x)12cos x,所以当0x时,f(x)0,f(x)单调递减;当x0,f(x)单调递增;所以当x时,f(x)有极小值,即最小值,且f(x)minf 2sin .又f(0)0,f().所以f(x)max.由题意得|f(x1)f(x2)|M等价于M|f(x)maxf(x)min|.所以M的最小值为.答案:9已知函数f(x)m2ln x(mR),g(x),若至少存在一个x01,e,使得f(x0)g(x0)成立,求实数m的取值范围解:依题意,不等式f(x)g(x)在1,e上有解,所以mx2ln x在

5、区间1,e上有解,即能成立令h(x),x1,e,则h(x).当x1,e时,h(x)0,h(x)在1,e上是增函数,所以h(x)的最大值为h(e).由题意,即m时,f(x)cos x,得f(x)0,则f(x)单调递减;当x(kZ)时,有sin x0,则f(x)单调递增所以f(x)的单调递增区间为(kZ),f(x)的单调递减区间为(kZ)(2)证明:记h(x)f(x)g(x).依题意及(1),有g(x)ex(cos xsin x),从而g(x)2exsin x.当x时,g(x)0,故h(x)f(x)g(x)g(x)(1)g(x)1时,若xa或x0,f(x)0;若1xa时,g(x)0,则f(x)0,

6、所以x1是函数f(x)的极大值点,不合题意当a1或x0;若ax1时,f(x)ln 21且x0时,exx22ax1.(1)解:由f(x)ex2x2a,xR,知f(x)ex2,xR.令f(x)0,得xln 2,当x变化时,f(x),f(x)的变化情况如下表:x(,ln 2)ln 2(ln 2,)f(x)0f(x)极小值故f(x)的单调递减区间是(,ln 2,单调递增区间是ln 2,),f(x)在xln 2处取得极小值,极小值为f(ln 2)eln 22ln 22a2(1ln 2a),无极大值(2)证明:设g(x)exx22ax1,xR,则g(x)ex2x2a,xR.由(1)知当aln 21时,g(

7、x)的最小值为g(ln 2)2(1ln 2a)0.于是对任意的xR,都有g(x)0,所以g(x)在R上单调递增于是当aln 21时,对任意的x(0,),都有g(x)g(0)而g(0)0,从而对任意的x(0,),g(x)0.即exx22ax10,故exx22ax1.C级素养升华13(2020衡水中学检测)设函数f(x)x2axln x(aR)(1)当a1时,求函数f(x)的极值;(2)若对任意a(4,5)及任意x1,x21,2,恒有mln 2|f(x1)f(x2)|成立,求实数m的取值范围解:(1)因为函数f(x)x2axln x(aR),所以函数f(x)的定义域为(0,)当a1时,f(x)xl

8、n x,f(x)1,当0x1时,f(x)1时,f(x)0,f(x)单调递增,所以函数f(x)的极小值为f(1)1,无极大值(2)因为函数f(x)x2axln x(aR),所以f(x)(1a)xa,当a(4,5)时,在区间1,2上,f(x)0,则f(x)单调递减,所以f(1)是f(x)的最大值,f(2)是f(x)的最小值,所以|f(x1)f(x2)|f(1)f(2)ln 2.因为对任意a(4,5)对任意x1,x21,2,恒有mln 2|f(x1)f(x2)|成立,所以mln 2ln 2,得m.因为a(4,5),所以10),当且仅当x1时,等号成立(2)指数形式:exx1(xR),当且仅当x0时,

9、等号成立进一步可得到一组不等式链:exx1x1ln x(x0,且x1)典例1已知函数f(x),则yf(x)的图象大致为()解析:因为f(x)的定义域为即x|x1,且x0,所以排除选项D.当x0时,由经典不等式x1ln x(x0),以x1代替x,得xln(x1)(x1,且x0),所以ln(x1)x1,且x0),易知B正确答案:B典例2已知函数f(x)ex,xR.证明:曲线yf(x)与曲线yx2x1有唯一公共点证明:令g(x)f(x)exx2x1,xR,则g(x)exx1,由经典不等式exx1恒成立可知,g(x)0恒成立,所以g(x)在R上为单调递增函数,且g(0)0.所以函数g(x)有唯一零点,

10、即两曲线有唯一公共点典例3(2017全国卷改编)已知函数f(x)x1aln x.(1)若f(x)0,求a的值;(2)证明:对于任意正整数n,e.(1)解:f(x)的定义域为(0,),若a0,因为f aln 20,所以不满足题意若a0,由f(x)1知,当x(0,a)时,f(x)0;当x(a,)时,f(x)0.所以f(x)在(0,a)单调递减,在(a,)单调递增,故xa是f(x)在(0,)的唯一最小值点因为f(1)0,所以当且仅当a1时,f(x)0,故a1.(2)证明:由(1)知当x(1,)时,x1ln x0.令x1,得ln.从而lnlnln11,故e.典例4已知函数f(x)axln x1.(1)若f(x)0恒成立,求a的最小值;(2)证明:xln x10.(1)解:由题意知x0,所以f(x)0等价于a.令g(x),则g(x),所以当x(0,1)时,g(x)0,当x(1,)时,g(x)0,则g(x)在(0,1)上单调递增,在(1,)上单调递减,所以g(x)maxg(1)1,则a1,所以a的最小值为1.(2)证明:当a1时,由(1)得xln x1,即t1ln t.令t,则xln xln t,所以xln x1,即xln x10.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3