1、板块命题点专练(八) 数 列命题点一数列的概念及表示1.(2016上海高考)无穷数列an由k个不同的数组成,Sn为an的前n项和若对任意nN*,Sn2,3,则k的最大值为_解析:由Sn2,3,得a1S12,3将数列写出至最多项,其中有相同项的情况舍去,共有如下几种情况:a12,a20,a31,a41;a12,a21,a30,a41;a12,a21,a31,a40;a13,a20,a31,a41;a13,a21,a30,a41;a13,a21,a31,a40.最多项均只能写到第4项,即kmax4.答案:42(2014全国卷)数列 an满足 an1,a82,则a1 _.解析:将a82代入an1,可
2、求得a7;再将a7代入an1,可求得a61;再将a61代入an1,可求得a52;由此可以推出数列an是一个周期数列,且周期为3,所以a1a7.答案:3.(2014安徽高考)如图,在等腰直角三角形ABC 中,斜边BC2.过点 A作BC 的垂线,垂足为A1 ;过点 A1作 AC的垂线,垂足为 A2;过点A2 作A1C 的垂线,垂足为A3 ;,依此类推设BAa1 ,AA1a2 , A1A2a3 , A5A6a7 ,则 a7_.解析:法一:直接递推归纳:等腰直角三角形ABC中,斜边BC2,所以ABACa12,AA1a2,A1A2a31,A5A6a7a16.法二:求通项:等腰直角三角形ABC中,斜边BC
3、2,所以ABACa12,AA1a2,An1Anan1sinanan2n,故a726.答案:命题点二等差数列与等比数列1.(2017江苏高考)等比数列an的各项均为实数,其前n项和为Sn.已知S3,S6,则a8_.解析:设等比数列an的公比为q,则由S62S3,得q1,则解得则a8a1q72732.答案:322(2016江苏高考)已知an是等差数列,Sn是其前n项和若a1a3,S510,则a9的值是_解析:法一:设等差数列an的公差为d,由S510,知S55a1d10,得a12d2,即a122d.所以a2a1d2d,代入a1a3,化简得d26d90,所以d3,a14.故a9a18d42420.法
4、二:设等差数列an的公差为d,由S510,知5a310,所以a32.所以由a1a32a2,得a12a22,代入a1a3,化简得a2a210,所以a21.公差da3a2213,故a9a36d21820.答案:203(2014江苏高考)在各项均为正数的等比数列an中,若a21,a8a62a4,则a6的值是_解析:设等比数列an的公比为q,q0,则a8a62a4即为a4q4a4q22a4,解得q22(负值舍去),又a21,所以a6a2q44.答案:44(2013江苏高考)在正项等比数列an中,a5,a6a73.则满足a1a2ana1a2an的最大正整数n的值为_解析:设等比数列an的公比为q(q0)
5、由a5,a6a73,可得(qq2)3,即q2q60,所以q2,所以an2n6,数列an的前n项和Sn2n525,所以a1a2an(a1an)2,由a1a2ana1a2an可得2n5252,由2n52,可求得n的最大值为12,而当n13时,2825213不成立,所以n的最大值为12.答案:125(2017江苏高考)对于给定的正整数k,若数列an满足:ankank1an1an1ank1ank2kan,对任意正整数n(nk)总成立,则称数列an是“P(k)数列”(1)证明:等差数列an是“P(3)数列”;(2)若数列an既是“P(2)数列”,又是“P(3)数列”,证明:an是等差数列证明:(1)因为
6、an是等差数列,设其公差为d,则ana1(n1)d,从而,当n4时,ankanka1(nk1)da1(nk1)d2a12(n1)d2an,k1,2,3,所以an3an2an1an1an2an36an,因此等差数列an是“P(3)数列”(2)数列an既是“P(2)数列”,又是“P(3)数列”,因此,当n3时,an2an1an1an24an,当n4时,an3an2an1an1an2an36an.由知,an3an24an1(anan1),an2an34an1(an1an)将代入,得an1an12an,其中n4,所以a3,a4,a5,是等差数列,设其公差为d.在中,取n4,则a2a3a5a64a4,所
7、以a2a3d,在中,取n3,则a1a2a4a54a3,所以a1a32d,所以数列an是等差数列6(2017全国卷)记Sn为等比数列an的前n项和已知S22,S36.(1)求an的通项公式;(2)求Sn,并判断Sn1,Sn,Sn2是否成等差数列解:(1)设an的公比为q.由题设可得解得故an的通项公式为an(2)n.(2)由(1)可得Sn(1)n.由于Sn2Sn1(1)n22Sn,故Sn1,Sn,Sn2成等差数列7(2015江苏高考)设a1,a2,a3,a4是各项为正数且公差为d(d0)的等差数列(1)证明:2a1,2a2,2a3,2a4依次构成等比数列(2)是否存在a1,d,使得a1,a,a,
8、a依次构成等比数列?并说明理由(3)是否存在a1,d及正整数n,k使得a,a,a,a依次构成等比数列?并说明理由解:(1)证明:因为2an1an2d(n1,2,3)是同一个常数,所以2a1,2a2,2a3,2a4依次构成等比数列(2)不存在,理由如下:令a1da,则a1,a2,a3,a4分别为ad,a,ad,a2d(ad,a2d,d0)假设存在a1,d,使得a1,a,a,a依次构成等比数列,则a4(ad)(ad)3,且(ad)6a2(a2d)4.令t,则1(1t)(1t)3,且(1t)6(12t)4,化简得t32t220(*),且t2t1.将t2t1代入(*)式,得t(t1)2(t1)2t23
9、tt13t4t10,则t.显然t不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a,a,a依次构成等比数列(3)不存在,理由如下:假设存在a1,d及正整数n,k,使得a,a,a,a依次构成等比数列,则a(a12d)n2k(a1d)2(nk),且(a1d)nk(a13d)n3k(a12d)2(n2k),分别在两个等式的两边同除以a及a,并令t,则(12t)n2k(1t)2(nk),且(1t)nk(13t)n3k(12t)2(n2k)将上述两个等式两边取对数,得(n2k)ln(12t)2(nk)ln(1t),且(nk)ln(1t)(n3k)ln(13t)2(n2k)ln(12
10、t)化简得2kln(12t)ln(1t)n2ln(1t)ln(12t),且3kln(13t)ln(1t)n3ln(1t)ln(13t)再将这两式相除,化简得ln(13t)ln(12t)3ln(12t)ln(1t)4ln(13t)ln(1t)(*)令g(t)4ln(13t)ln(1t)ln(13t)ln(12t)3ln(12t)ln(1t),则g(t).令(t)(13t)2ln(13t)3(12t)2ln(12t)3(1t)2ln(1t),则(t)6(13t)ln(13t)2(12t)ln(12t)(1t)ln(1t)令1(t)(t),则1(t)63ln(13t)4ln(12t)ln(1t)令2
11、(t)1(t),则2(t)0.由g(0)(0)1(0)2(0)0,2(t)0,知2(t),1(t),(t),g(t)在和(0,)上均单调故g(t)只有唯一零点t0,即方程(*)只有唯一解t0,故假设不成立所以不存在a1,d及正整数n,k,使得a,a,a,a依次构成等比数列8(2013江苏高考)设an是首项为a,公差为d的等差数列(d0),Sn是其前n项的和记bn,nN*,其中 c为实数(1)若c0,且b1,b2,b4成等比数列,证明:Snkn2Sk(k,nN*);(2)若bn是等差数列,证明:c0.证明:由题设,Snnad.(1)由c0,得bnad.又b1,b2,b4成等比数列,所以bb1b4
12、,即2a,化简得d22ad0.因为d0,所以d2a.因此,对于所有的mN*,有Smm2a.从而对于所有的k,nN*,有Snk(nk)2an2k2an2Sk.(2)设数列bn的公差是d1,则bnb1(n1)d1,即b1(n1)d1,nN*,代入Sn的表达式,整理得,对于所有的nN*,有n3n2cd1nc(d1b1)令Ad1d,Bb1d1ad,Dc(d1b1),则对于所有的nN*,有An3Bn2cd1nD.(*)在(*)式中分别取n1,2,3,4,得ABcd18A4B2cd127A9B3cd164A16B4cd1,从而有由,得A0,cd15B,代入方程,得B0,从而cd10.即d1d0,b1d1a
13、d0,cd10.若d10,则由d1d0,得d0,与题设矛盾,所以d10.又cd10,所以c0.命题点三数列求和1.(2017全国卷)等差数列an的前n项和为Sn,a33,S410,则_.解析:设等差数列an的首项为a1,公差为d,依题意有解得所以Sn,2,因此2.答案:2(2017全国卷)设数列an满足a13a2(2n1)an2n.(1)求an的通项公式;(2)求数列的前n项和解:(1)因为a13a2(2n1)an2n,故当n2时,a13a2(2n3)an12(n1)两式相减得(2n1)an2,所以an(n2)又由题设可得a12,满足上式,从而an的通项公式为an.(2)记的前n项和为Sn.由
14、(1)知.则Sn.3(2017北京高考)已知等差数列an和等比数列bn满足a1b11,a2a410,b2b4a5.(1)求an的通项公式;(2)求和:b1b3b5b2n1.解:(1)设等差数列an的公差为d.因为所以2a14d10,解得d2,所以an2n1.(2)设等比数列bn的公比为q.因为b11,b2b4a5,所以b1qb1q39.解得q23.所以b2n1b1q2n23n1.从而b1b3b5b2n113323n1.命题点四数列的综合应用1.(2016江苏高考)记U1,2,100,对数列an(nN*)和U的子集T,若T,定义ST0;若Tt1,t2,tk,定义STat1at2atk.例如:T1
15、,3,66时,STa1a3a66.现设an(nN*)是公比为3的等比数列,且当T2,4时,ST30.(1)求数列an的通项公式;(2)对任意正整数k(1k100),若T1,2,k,求证:STak1;(3)设CU,DU,SCSD,求证:SCSCD2SD.解:(1)由已知得ana13n1,nN*.于是当T2,4时,STa2a43a127a130a1.又ST30,故30a130,即a11.所以数列an的通项公式为an3n1,nN*.(2)证明:因为T1,2,k,an3n10,nN*,所以STa1a2ak133k1(3k1)3k.因此,STak1.(3)证明:下面分三种情况证明若D是C的子集,则SCS
16、CDSCSDSDSD2SD.若C是D的子集,则SCSCDSCSC2SC2SD.若D不是C的子集,且C不是D的子集令ECUD,FDUC,则E,F,EF.于是SCSESCD,SDSFSCD,进而由SCSD得SESF.设k为E中的最大数,l为F中的最大数,则k1,l1,kl.由(2)知,SEak1.于是3l1alSFSEak13k,所以l1k,即lk.又kl,故lk1.从而SFa1a2al133l1,故SE2SF1,所以SCSCD2(SDSCD)1,即SCSCD2SD1.综合得,SCSCD2SD.2(2016天津高考)已知an是等比数列,前n项和为Sn(nN*),且,S663.(1)求an的通项公式
17、;(2)若对任意的nN*,bn是log2an和log2an1的等差中项,求数列(1)nb的前2n项和解:(1)设数列an的公比为q.由已知,有,解得q2或q1.又由S6a163,知q1,所以a163,得a11.所以an2n1.(2)由题意,得bn(log2anlog2an1)(log22n1log22n)n,即bn是首项为,公差为1的等差数列设数列(1)nb的前n项和为Tn,则T2n(bb)(bb)(bb)b1b2b3b4b2n1b2n2n2.3(2014江苏高考)设数列an的前n项和为Sn.若对任意正整数n,总存在正整数m,使得Snam,则称an是“H数列”(1)若数列an的前n项和Sn2n
18、(nN*),证明:an是“H数列”;(2)设an是等差数列,其首项a11,公差d0.若an是“H数列”,求d的值;(3)证明:对任意的等差数列an,总存在两个“H数列”bn和cn,使得anbncn(nN*)成立解:(1)证明:由已知,当n1时,an1Sn1Sn2n12n2n.于是对任意的正整数n,总存在正整数mn1,使得Sn2nam.所以an是“H数列”(2)由已知,得S22a1d2d.因为an是“H数列”,所以存在正整数m,使得S2am,即2d1(m1)d,于是(m2)d1.因为d0,所以m2M;或者存在正整数m,使得cm,cm1,cm2,是等差数列解:(1)c1b1a1110,c2maxb12a1,b22a2max121,3221,c3maxb13a1,b23a2,b33a3max131,332,5332.当n3时,(bk1nak1)(bknak)(bk1bk)n(ak1ak)2n0时,取正整数m,则当nm时,nd1d2,因此cnb1a1n.此时,cm,cm1,cm2,是等差数列当d10时,对任意n1,cnb1a1n(n1)maxd2,0b1a1(n1)(maxd2,0a1)此时,c1,c2,c3,cn,是等差数列当d1时,有nd1max,故当nm时,M.