1、选修44坐标系与参数方程第一节坐标系考纲传真1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形表示的极坐标方程1平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换:的作用下,点P(x,y)对应到点P(x,y),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换2极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向
2、(通常取逆时针方向),这样就建立了一个极坐标系(2)极坐标极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为.极角:以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.极坐标:有序数对(,)叫做点M的极坐标,记为M(,)一般不作特殊说明时,我们认为0,可取任意实数3极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(,),则它们之间的关系为:4简单曲线的极坐标方程曲线极坐标方程圆心为极点,半径为r的圆r(02)圆心为(r,0),半径为r的圆2rcos 圆心为,半径为r的圆2rsin (0)过极点,倾斜角为的直线(R)或(R)过点(a,
3、0),与极轴垂直的直线cos a过点,与极轴平行的直线sin a(0)基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系()(2)若点P的直角坐标为(1,),则点P的一个极坐标是.()(3)在极坐标系中,曲线的极坐标方程不是唯一的()(4)极坐标方程(0)表示的曲线是一条直线()答案(1)(2)(3)(4)2(教材改编)在极坐标系中,圆2sin 的圆心的极坐标是()A.B.C(1,0) D(1,)B法一:由2sin ,得22sin ,化成直角坐标方程为x2y22y,化成标准方程为x2(y
4、1)21,圆心坐标为(0,1),其对应的极坐标为.法二:由2sin 2cos,知圆心的极坐标为,故选B.3(教材改编)若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y1x(0x1)的极坐标方程为()A,0B,0Ccos sin ,0Dcos sin ,0Ay1x(0x1),sin 1cos (0cos 1),.4在极坐标系中,曲线C1和C2的方程分别为sin2 cos 和sin 1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2的交点的直角坐标为_(1,1)由sin2cos 2sin2cos y2x,又由sin 1y1,联立故曲线C
5、1和C2交点的直角坐标为(1,1)5在极坐标系中,圆8sin 上的点到直线(R)距离的最大值是_6圆8sin 即28sin ,化为直角坐标方程为x2(y4)216,直线,则tan ,化为直角坐标方程为xy0,圆心(0,4)到直线的距离为2,所以圆上的点到直线距离的最大值为246.平面直角坐标系中的伸缩变换1求椭圆y21经过伸缩变换后的曲线方程解由得到将代入y21,得y21,即x2y21.因此椭圆y21经伸缩变换后得到的曲线方程是x2y21.2将圆x2y21变换为椭圆1的一个伸缩变换公式为:求a,b的值解由得代入x2y21中得1,所以a29,b24,即a3,b2.规律方法伸缩变换后方程的求法,平
6、面上的曲线yf(x)在变换:的作用下的变换方程的求法是将代入yf(x),得,整理之后得到yh(x),即为所求变换之后的方程.易错警示:应用伸缩变换时,要分清变换前的点的坐标(x,y)与变换后的点的坐标(x,y).极坐标系与直角坐标系的互化【例1】(2019合肥质检)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系曲线C的极坐标方程为cos1(02),M,N分别为曲线C与x轴,y轴的交点(1)写出曲线C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程解(1)由cos1得1.从而曲线C的直角坐标方程为xy1,即xy20.当0时,2,所以M(2,0)当
7、时,所以N.(2)M点的直角坐标为(2,0),N点的直角坐标为.所以P点的直角坐标为,则P点的极坐标为.所以直线OP的极坐标方程为(R)规律方法极坐标方程与直角坐标方程的互化方法(1)直角坐标方程化为极坐标方程:将公式xcos 及ysin 直接代入直角坐标方程并化简即可.(2)极坐标方程化为直角坐标方程:通过变形,构造出形如cos ,sin ,2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形技巧. 已知圆O1和圆O2的极坐标方程分别为2,22cos2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程解(1)由2知
8、24,所以圆O1的直角坐标方程为x2y24.因为22cos2,所以222,所以圆O2的直角坐标方程为x2y22x2y20.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为xy1.化为极坐标方程为cos sin 1,即sin.极坐标方程的应用【例2】在直角坐标系xOy中,直线C1:x2,圆C2:(x1)2(y2)21,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为(R),设C2与C3的交点为M,N,求C2MN的面积解(1)因为xcos ,ysin ,所以C1的极坐标方程为cos 2,C2的极坐标方程为22cos 4sin
9、40.(2)将代入22cos 4sin 40,得2340,解得12,2.故12,即|MN|.由于C2的半径为1,所以C2MN的面积为.规律方法在用方程解决直线、圆和圆锥曲线的有关问题时,将极坐标方程化为直角坐标方程,有助于增加对方程所表示的曲线的认识,从而达到化陌生为熟悉的目的,这是转化与化归思想的应用. (2019广州调研)在极坐标系中,求直线sin2被圆4截得的弦长解由sin2,得(sin cos )2,可化为xy20.圆4可化为x2y216,圆心(0,0)到直线xy20的距离d2,由圆中的弦长公式,得弦长l224.故所求弦长为4.1(2018全国卷)在直角坐标系xOy中,曲线C1的方程为
10、yk|x|2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为22cos 30.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程解(1)由xcos ,ysin 得C2的直角坐标方程为(x1)2y24.(2)由(1)知C2是圆心为A(1,0),半径为2的圆由题设知,C1是过点B(0,2)且关于y轴对称的两条射线记y轴右边的射线为l1,y轴左边的射线为l2.由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点当l1与C2只有一个公共点时,点A
11、到l1所在直线的距离为2,所以2,故k或k0.经检验,当k0时,l1与C2没有公共点;当k时,l1与C2只有一个公共点,l2与C2有两个公共点当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以2,故k0或k.经检验,当k0时,l1与C2没有公共点;当k时,l2与C2没有公共点综上,所求C1的方程为y|x|2.2(2017全国卷)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为cos 4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|OP|16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为,点B在曲线C2上,求OAB
12、面积的最大值解(1)设P的极坐标为(,)(0),M的极坐标为(1,)(10)由题设知|OP|,|OM|1.由|OM|OP|16得C2的极坐标方程为4cos (0)因此C2的直角坐标方程为(x2)2y24(x0)(2)设点B的极坐标为(B,)(B0)由题设知|OA|2,B4cos ,于是OAB的面积S|OA|BsinAOB4cos 22.当时,S取得最大值2.所以OAB面积的最大值为2.3(2016全国卷)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a0)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:4cos .(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为0,其中0满足tan 02,若曲线C1与C2的公共点都在C3上,求a.解(1)消去参数t得到C1的普通方程为x2(y1)2a2,则C1是以(0,1)为圆心,a为半径的圆将xcos ,ysin 代入C1的普通方程中,得到C1的极坐标方程为22sin 1a20.(2)曲线C1,C2的公共点的极坐标满足方程组若0,由方程组得16cos28sin cos 1a20,由已知tan 2,可得16cos28sin cos 0,从而1a20,解得a1(舍去)或a1.当a1时,极点也为C1,C2的公共点,且在C3上所以a1.