ImageVerifierCode 换一换
格式:PDF , 页数:3 ,大小:137.61KB ,
资源ID:1004094      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1004094-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(大数据背景下统计学专业“数据挖掘”课程的教学探讨.pdf)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

大数据背景下统计学专业“数据挖掘”课程的教学探讨.pdf

1、大数据背景下统计学专业“数据挖掘”课程的教学探讨范彩云摘 要:互联网技术、物联网技术、云计算技术的蓬勃发展,造就了一个崭新的大数据时代,这些变化对统计学专业人才培养模式的变革起到了助推器的作用,而数据挖掘作为拓展和提升大数据分析方法与思路的应用型课程,被广泛纳入统计学本科专业人才培养方案。本文基于数据挖掘课程的特点,结合实际教学经验,对统计学本科专业开设数据挖掘课程进行教学探讨,以期达到更好的教学效果。关键词:统计学专业;数据挖掘;大数据;教学一、引言通常人们总结大数据有“4V”的特點:Volume(体量大),Variety(多样性),Velocity(速度快)和 Value(价值密度低)。从

2、这样大量、多样化的数据中挖掘和发现内在的价值,是这个时代带给我们的机遇与挑战,同时对数据分析技术的要求也相应提高。传统教学模式并不能适应和满足学生了解数据处理和分析最新技术与方法的迫切需要。对于常常和数据打交道的统计学专业的学生来说,更是如此。二、课程教学探讨针对统计学本科专业的学生而言,“数据挖掘”课程一般在他们三年级或者四年级所开设,他们在前期已经学习完统计学、应用回归分析、多元统计分析、时间序列分析等课程,所以在“数据挖掘”课程的教学内容选择上要有所取舍,同时把握好难度。不能把“数据挖掘”课程涵盖了的所有内容不加选择地要求学生全部掌握,对学生来说是不太现实的,需要为统计学专业本科生“个性

3、化定制”教学内容。(1)“数据挖掘”课程的教学应该偏重于应用,更注重培养学生解决问题的能力。因此,教学目标应该是:使学生树立数据挖掘的思维体系,掌握数据挖掘的基本方法,提高学生的实际动手能力,为在大数据时代,进一步学习各种数据处理和定量分析工具打下必要的基础。按照这个目标,教学内容应以数据挖掘技术的基本原理讲解为主,让学生了解和掌握各种技术和方法的来龙去脉、功能及优缺点;以算法讲解为辅,由于有R 语言、python 等软件,学生了解典型的算法,能用软件把算法实现,对软件的计算结果熟练解读,对各种算法的改进和深入研究则不作要求,有兴趣的同学可以自行课下探讨。(2)对于已经学过的内容不再详细讲解,

4、而是侧重介绍它们在数据挖掘中的功能及综合应用。在新知识的讲解过程中,注意和已学过知识的融汇贯通,既复习巩固了原来学过的知识,同时也无形中降低了新知识的难度。比如,在数据挖掘模型评估中,把混淆矩阵、ROC 曲线、误差平方和等知识点就能和之前学过的内容有机联系起来。(3)结合现实数据,让学生由“被动接收”式的学习变为“主动探究”型的学习。在讲解每种方法和技术之后,增加一个或几个案例,以加强学生对知识的理解。除了充分利用已有的国内外数据资源,还可以鼓励学生去搜集自己感兴趣的或者国家及社会大众关注的问题进行研究,提升学生学习的成就感。(4)充分考虑前述提到的三点,课程内容计划安排见表 1。(5)课程的

5、考核方式既要一定的理论性,又不能失掉实践应用性,所以需要结合平时课堂表现、平时实验项目完成情况和期末考试来综合评定成绩。采取期末闭卷理论考试占 50%,平时实验项目完成占 40%,课堂表现占 10%,这样可以全方位的评价学生的表现。三、教学效果评估经过几轮的教学实践后,取得了如下的教学效果:(1)学生对课程的兴趣度在提升,课下也会不停地去思考数据挖掘有关的方法和技巧,发现问题后会一起交流与讨论。(2)在大学生创新创业项目或者数据分析的有关竞赛中,选用数据挖掘方法的人数也越来越多,部分同学的成果还能在期刊上正式发表,有的同学还能在竞赛中取得优秀的成绩。(3)统计学专业本科生毕业论文的选题中利用数

6、据挖掘有关方法来完成的论文越来越多,论文的完成质量也在不断提高。(4)本科毕业生的就业岗位中从事数据挖掘工作的人数有所提高,说明满足企业需求技能的人数在增加。继续深造的毕业生选择数据挖掘研究方向的人数也在逐渐增多,表明学生的学习兴趣得以激发。教学实践结果表明,通过数据挖掘课程的学习,可以让学生在掌握理论知识的基础上,进一步提升分析问题和解决实际问题的能力。四、结束语数据挖掘是一门新型的多学科交叉的学科,知识内容体系不断地发展和更新。目前在大数据背景下,开设数据挖掘课程有其现实意义,同时对教学是一个挑战,需要在教学过程中不断探索和研究,引领学生发现数据挖掘方法与传统统计分析方法的区别和共同之处。

7、因此,在教学过程中针对统计学专业的学生,尤其是本科生现有的知识水平,认真安排教学内容,科学设计教学方法,从而激发学生的学习兴趣,提高课堂教学效率,增强学生实践能力。参考文献1陈欣,王月虎.大数据背景下数据挖掘课程的教学方法探讨J.文教资料,2017(23):175-176.2李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域J.中国科学院院刊,2012,27(6):647-657.3朱恒民.专业学生开设数据挖掘课程的教学探索J.教学研究,2013,36(4):82-84.4张艳.大数据背景下的数据挖掘课程教学新思考J.计算机时代,2014(4):59-61.5李海林.大数据环境下的数据挖掘课程教学探索J.计算机时代,2014(2):54-55.6刘云霞.统计学专业本科生开设“数据挖掘”课程的探讨J.吉林工程技术师范学院学报,2010(06):25-27.7石洪波,冀素琴,吕亚丽.财经院校信息类专业数据管理与分析课程群体系研究J.高等财经教育研究,2015(3):54-58.8李姗姗,李忠.就业需求驱动下的本科院校数据挖掘课程内容体系探讨J.计算机时代,2015(2):60-61.(作者单位:上海对外经贸大学统计与信息学院,上海201620)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3