ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:294.44KB ,
资源ID:1003893      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1003893-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河北省大名县第一中学2020届高三数学上学期期末强化训练试题二文PDF.pdf)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

河北省大名县第一中学2020届高三数学上学期期末强化训练试题二文PDF.pdf

1、文数强化训练试题二一、选择题(每题 5 分,共 60 分)1若抛物线的焦点与双曲线的右焦点重合,则 的值为A2B-C4D 2 22已知双曲线2221(0)xyaa 两焦点之间的距离为 4,则双曲线的渐近线方程是A33yx B3yx C2 33yx D32yx 3已知点 P 是椭圆221168xy上的动点,过点 P 作圆22:11Cxy的切线,A 为其中一个切点,则 PA 的取值范围为A 1 11,B6 2 6,C622,D211,4已知圆 C:(x1)2+(y4)2=10 和点 M(5,t),若圆 C 上存在两点 A,B,使得 MAMB,则实数 t 的取值范围为A2,6B3,5C2,6D3,5

2、5已知双曲线22221(0,0)xyabab的左顶点、右焦点分别为 A、F,点 B(0,b),若|BABFBABF,则该双曲线离心率 e 的值为A312B512C512D26已知12,F F 是椭圆 C:22221xyab(0)ab的两个焦点,P 为椭圆 C 上的一点,且12PFPF1.若12PF F的面积为 9,则b A3B6C3 4D2 4 27已知 F1、F2 是双曲线 M:22214yxm 的焦点,2 55yx是双曲线 M 的一条渐近线,离心率等于 34的椭圆 E 与双曲线 M 的焦点相同,P 是椭圆 E 与双曲线 M 的一个公共点,设|PF1|PF2|=n,则An=12Bn=24Cn

3、=36D12n 且24n 且36n 8已知中心在原点的椭圆 C 的右焦点为(1,0),一个顶点为(0,3),若在此椭圆上存在不同两点关于直线2yxm对称,则 m 的取值范围是A(1515,33)B(2 13 2 13,1313)C(1 12 2,)D(1515,1313)9已知抛物线()21:20Cypx p=的焦点为 F,准线与 x 轴的交点为 E,线段 EF 被双曲线22222:10,0 xyCabab的顶点三等分,且两曲线12,C C 的交点连线过曲线1C 的焦点 F,曲线2C 的焦距为 2 11,则曲线2C 的离心率为A2B 3 22C113D22210过点1,1H作抛物线24xy的两

4、条切线,HA HB,切点为,A B,则 ABH的面积为A 5 54B 5 52C 3 52D5 511过抛物线:220ypx p的焦点 F 作倾斜角为 60的直线l,若直线l 与抛物线在第一象限的交点为 A,并且点 A 也在双曲线:222210,0 xyabab的一条渐近线上,则双曲线的离心率为A213B 13C 2 33D 512点、分别是双曲线的左、右焦点,点 在双曲线上,则的内切圆半径 的取值范围是ABCD二、填空题(每题 5 分,共 20 分)13已知直线 yax 与圆 C:x2y22ax2y20 交于两点 A,B,且CAB 为等边三角形,则圆C 的面积为_14已知圆C:22(2)2x

5、y,在圆C 内随机取一点 M,直线OM 交圆C 于 A,B 两点(O 为坐标原点),则2AB 的概率为_15设椭圆的右焦点为 F,离心率为 e,直线 AB 的斜率为 k,A,B 为椭圆上关于原点对称的两点,AF、BF 的中点分别为 M、N,以线段 MN 为直径的圆过原点若,则 e 的取值范围是_16已知椭圆22221xyab:与双曲线22221xymn:共焦点,F1、F2 分别为左、右焦点,曲线 与 在第一象限交点为 P,且离心率之积为 1.若1212sin2sinF PFPF F,则该双曲线的离心率为_.三、解答题17(10 分)设数列 na的前 n 项和为nS,且12nn nS(1)求数列

6、 na的通项公式;(2)令1221,2,3nannnbna a ,其前n 项和为nT,如果对任意的*nN,都有22nTtt成立,求nT 的表达式及实数t 的取值范围18(12 分)已知 ABC中,角 A,B,C 的对边分别为cba,且CbBcBacoscoscos2(1)求角 B 的大小;(2)设向量cos,cos2,12,5mAA n,边长4a,求当m n 取最大值时,三角形的面积ABCS的值19.某市从高二年级随机选取 1000 名学生,统计他们选修物理、化学、生物、政治、历史和地理六门课程(前 3 门为理科课程,后 3 门为文科课程)的情况,得到如下统计表,其中“”表示选课,“空白”表示

7、未选科目方案人数物理化学生物政治历史地理一220二200三180四175五135六90()在这 1000 名学生中,从选修物理的学生中随机选取 1 人,求该学生选修政治的概率;()在这 1000 名学生中,从选择方案一、二、三的学生中各选取 2 名学生,如果在这 6 名学生中随机选取 2 名,求这 2 名学生除选修物理以外另外两门选课中有相同科目的概率;()利用表中数据估计该市选课偏文(即选修至少两门文科课程)的学生人数多还是偏理(即选修至少两门理科课程)的学生人数多,并说明理由.20(12 分)已知椭圆 C:22221(0)xyabab,P 为 C 的下顶点,F 为其右焦点,点 G 的坐标为

8、,0b,且2 2PFPG,椭圆 C 的离心率为32 1 求椭圆 C 的标准方程;2 已知点4,2H,直线 l:102yxm m交椭圆 C 于不同的两点 A,B,求 HAB面积的最大值21(12 分)曲线22:12xCy,直线:10l ykxk关于直线1yx 对称的直线为 1l,直线l,1l 与曲线C 分别交于点 A、M 和 A、N,记直线 1l 的斜率为1k()求证:11k k;()当 k 变化时,试问直线 MN 是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由22(12 分)已知椭圆的离心率为,且经过点,两个焦点分别为.(1)求椭圆 的方程;(2)过的直线 与椭圆 相交于两

9、点,若的内切圆半径为,求以为圆心且与直线 相切的圆的方程.参考答案CABCBAACDBAA13.614.11215.16.51217.(1)12nn nS,111222nnnn nnnaSSn n,又111aS,故1nan n1nan n,221nnbn n,又 211211n nnn,故12 1 21111122 121 222311nnnTnnn,则nT 是增函数,1min3nTT,故23213ttt 18.(1)由题意:,sincoscossincossin2BCBCBA所以4B(2)因为12cos5cos2,m nAA 所以10cos212cos5m nAA 54353cos10-2A

10、所以当3cos5A 时,m n 取最大值,此时4sin,45Aa,由正弦定理得sin5 3,sinsinsin2abaBbABA,43 3sin10C194 3sin22ABCSabC19.()设事件 A 为“在这1000名学生中,从选修物理的学生中随机选取 1 人,该学生选修政治”.在这1000名学生中,选修物理的学生人数为 220200 180600,其中选修政治的学生人数为 220,所以22011()60030P A.故在这1000名学生中,从选修物理的学生中随机选取 1 人,该学生选修政治的概率为 1130.()设这六名学生分别为 A1,A2,B1,B2,C1,C2,其中 A1,A2

11、选择方案一,B1,B2 选择方案二,C1,C2 选择方案三.从这 6 名学生中随机选取 2 名,所有可能的选取方式为:A1A2,A1B1,A1B2,A1C1,A1C2,A2B1,A2B2,A2C1,A2C2,B1B2,B1C1,B1C2,B2C1,B2C2,C1C2,共有15 种选取方式.记事件 B 为“这 2 名学生除选修物理以外另外两门选课中有相同科目”.在15 种选取方式中,这 2 名学生除选修物理以外另外两门选课中有相同科目的选取方式有 A1A2,B1B2,C1C2,B1C1,B1C2,B2C1,B2C2,A1C1,A1C2,A2C1,A2C2,共 11 种,因此11()15P B.(

12、)在选取的 1000 名学生中,选修至少两门理科课程的人数为 220200 180600人,频率为 600310005.选修至少两门文科课程的人数为175 13590400人,频率为 400210005.从上述数据估计该市选课偏理的学生人数多.20解:1 由题意得,2PFa PGb,即有22 2ab,32ca,222abc,2a,1b ,所求椭圆的方程为2214xy;2 设直线 l 的方程为102yxm m,由221214yxmxy,得222220 xmxm,由题意得,2244 220mm,得220m,即20m或02m,设 11,A x y,22,B xy,则221212125()()2ABx

13、xyyxx2212125()45 22xxx xm,又由题意得,4,2H到直线102yxm m的距离25md,HAB的面积22222211252212225mmmsd ABmmm,当且仅当222mm,即1m 时取等号,且此时满足0,所以 HAB的面积的最大值为 121.()证明:设直线l 上任意一点,P x y 关于直线1yx 对称点为000,P xy,直线l 与直线 1l 的交点为0,1,:1l ykx,11:1lyk x,1ykx,0101ykx,由00122yyxx 得002yyxx,由001yyxx,得00yyxx ,由得0011xyyx,0010111 111yyyyy xyxkkx

14、xx y;()设点11,M x y,22,N xy,由221 22ykxxy,得221240kxkx,可得0 x 或2412kxk,即222421,1221kkMkk,由11kk ,可将k 换为 1k,可得22242,22kkNkk,21MNMNMNyykkxxk,即直线 MN:NMNNyykxx,可得222221422kkkyxkkk ),即为213kyxk,则当 k 变化时,直线 MN 过定点0,3 22.()由,所以,将点的坐标代入椭圆方程得,故所求椭圆方程为;()设直线 的方程为,代入椭圆方程得,显然判别式大于 0 恒成立,设,的内切圆半径为,则有,所以而所以解得,因为所求圆与直线 相切,所以半径=,所以所求圆的方程为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3