1、成才之路 数学路漫漫其修远兮 吾将上下而求索北师大版 选修2-1 空间向量与立体几何第二章向量(或矢量),最初被应用于物理学很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量“向量”一词来自力学、解析几何中的有向线段最先使用有向线段表示向量的是英国大科学家牛顿从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.18世纪末,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数abi,并利用具有几何意义的复数运算来定义向量的运算,把坐标平面上的点用向量表示出来,并
2、把向量的几何表示用于研究几何问题与三角问题人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样进入了数学但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量他的工作为向量代数和向量分析的建立奠定了基础随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪80年代各自独立完成
3、的他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数他们引进了两种类型的乘法,即数量积和向量积,并把向量代数推广到变向量的向量微积分从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具链接生活:2.1 从平面向量到空间向量第二章知识要点解读2预习效果检测3课堂典例讲练4课 时 作 业6易混易错辨析5课前自主预习1课前自主预习1空间向量的概念向量是既有大小又有方向的量,如果把问题的研究范围限定在同一个平面上,称之为平面向量;如果把问题的研究范围扩大到空间中,称之为空间向量即空间中_的量叫作空间向量既有大小又有方向大小0 a,b0或5向量与平面(1)平面的法
4、向量:如果直线l垂直于平面,那么把_叫作平面的法向量(2)共面向量:在空间中,如果_,则称这个向量平行于该平面平行于同一平面的一组向量叫作共面向量不共面向量:不平行于同一平面的一组向量叫作不共面向量直线l的方向向量a一个向量所在直线平行于一个平面知识要点解读1空间向量是平面向量概念的拓展,只有大小和方向两个要素,用有向线段表示向量时,它的起点可以是空间内的任意一点,只要保证它的大小和方向不改变,它是可以自由平移的,与起点无关2空间中的所有向量的方向不都是一定的,例如零向量的方向就不确定,可以认为是任意方向3与向量a相反的向量是一个向量,它的方向和a的方向相反,大小和a的大小相等与向量a相等的向
5、量,它的方向和a的方向相同,大小和a的大小相等预习效果检测1若空间向量a与向量b不相等,则a与b一定()A有不同的方向 B有不相等的模C不可能是平行向量D不可能都是零向量答案D解析a、b不相等,可能方向不同,也可能模不相等,所以A、B、C都不正确,只有D正确4 直 线 的 方 向 向 量 与 直 线 上 任 意 一 向 量 的 夹 角 是_答案0或180解析由直线的方向向量的定义易得课堂典例讲练向量的有关概念总结反思本题重点考查了空间向量的相关概念,解决此类题往往借助实例和举反例的方法求解,因此,又考查了数形结合思想、特殊与一般的思想如图,已知矩形ABCD和矩形ADEF所在的平面互相垂直,点H
6、、M、G分别为线段EF、AD、BC的中点分析两个空间向量相等是指它们的模相等且方向相同向量的方向是否相同要看箭头方向是否一致两空间向量平行与否与向量的方向无关向量的夹角对于平行四边形ABDC,图中的五个向量中各个向量之间的关系如何?在图中画出平行四边形ABDC的一个法向量分析分析图中五个向量的关系,要看它们是否相等、相反或平行作平面的法向量,只要作向量b,使之垂直于平面内两个相交向量即可法向量方向向量如图,在正方体ABCDA1B1C1D1中,(1)分别给出直线AA1、BD的一个方向向量;(2)分 别 给 出 平 面 ADD1A1、平 面BB1D1D的一个法向量易混易错辨析误解A(或B或D)正解C总结反思在选项A中,若b0,则结论不成立;在选项B中,向量共面与直线共面的不同点在于三个向量中的一个向量所在直线与另两个向量所在平面平行时,三个向量所在的直线虽然不共面,但这三个向量是共面的;选项D中,若ab0时,有无数个满足等式,而不是唯一一个;若b0,a0,则不存在使aB课 时 作 业(点此链接)
Copyright@ 2020-2024 m.ketangku.com网站版权所有