收藏 分享(赏)

《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc

上传人:高**** 文档编号:1002781 上传时间:2024-06-03 格式:DOC 页数:10 大小:408.50KB
下载 相关 举报
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第1页
第1页 / 共10页
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第2页
第2页 / 共10页
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第3页
第3页 / 共10页
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第4页
第4页 / 共10页
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第5页
第5页 / 共10页
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第6页
第6页 / 共10页
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第7页
第7页 / 共10页
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第8页
第8页 / 共10页
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第9页
第9页 / 共10页
《课堂新坐标》2016-2017学年高中数学北师大版选修4-1学案:1.1.5 直角三角形的射影定理 WORD版含解析.doc_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1.5直角三角形的射影定理1.理解直角三角形的射影定理并会证明.2.会应用直角三角形的射影定理解决直角三角形的有关问题.基础初探教材整理1比例中项如果abbc(即b2ac),那么b称为a和c的比例中项.1.已知4是a与8的比例中项,求实数a的值.【解】4是a与8的比例中项,428a,a2.教材整理2直角三角形的射影定理(1)定理:直角三角形的每一条直角边是它在斜边上的射影与斜边的比例中项,斜边上的高是两条直角边在斜边上射影的比例中项.(2)表示:如图1157,在RtABC中,CD为斜边AB上的高,则有BC2BDBA,AC2ADAB,CD2ADDB.图11572.已知:在ABC中,ACB90,C

2、D是AB边上的高,BC cm,BD3 cm,则AD的长是()A.5 cmB.2 cmC.6 cmD.24 cm【解析】由题意知BC2BDAB,AB5,ADABBD532.【答案】B3.如图1158所示,在RtABC中,ACB90,CDAB于点D,CD2,BD3,则AC_.图1158【解析】由CD2BDAD得AD,ABBDAD3,AC2ADAB,AC.【答案】4.在RtABC中,ACB90,CD是高,AC12 cm,BC15 cm,则SACDSBCD_. 【导学号:96990009】【解析】由直角三角形的射影定理知,AC2ADAB,BC2BDAB,.【答案】1625质疑手记预习完成后,请将你的疑

3、问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 小组合作型利用射影定理进行计算已知:CD是直角三角形ABC斜边AB上的高,如果两直角边AC,BC的长度比为ACBC34.求:(1)ADBD的值;(2)若AB25 cm,求CD的长.【精彩点拨】先根据ACBC与ADBD之间的关系求出ADBD的值;再根据斜边AB的长及ADBD的值分别确定AD与BD的值.最后由射影定理CD2ADBD,求得CD的长.【自主解答】(1)AC2ADAB,BC2BDAB,22,即ADBD916.(2)AB25 cm,ADBD916,AD259(cm).BD2516(cm),CD12(cm).1.解答本题(

4、1)时,关键是把转化为2.2.解此类题目的关键是反复利用射影定理求解直角三角形中有关线段的长度.在解题时,要紧抓线段比之间的关系及线段的平方与乘积相等这些条件,紧扣等式结构形式,达到最终目的.再练一题1.本例中若条件改为“AD6 cm,CD2 cm”,试求:(1)A的度数;(2)ABC的面积. 【导学号:96990010】【解】(1)CD2 cm,AD6 cm,tan A,A30.(2)CD2ADBD,BD2(cm).AB628(cm),SABCABCD828(cm2).利用射影定理进行证明已知:如图1159,BAC90,ADBC,DEAB,DFAC,垂足分别为D,E,F.求证:.图1159【

5、精彩点拨】本题要证的等式左边次数较高,不易发现规律,故可从较简单的右边入手探求等式成立的条件.【自主解答】由射影定理得BD2BEAB,即BE.又CD2CFAC,CF.得,2.由射影定理得,AB2BCBD,即BD.同理AC2CDBC,CD.将代入得.1.在从右往左证明时,先根据射影定理得到BE,CF,从而得到,再把有关元素进行转化.2.利用直角三角形的射影定理证明恒等式时,要结合图形,仔细分析题目的结论,合理利用射影定理中提供的等式.再练一题2.如图1160所示,在ABC中,AD为BC边上的高,过D作DEAB,DFAC,E,F为垂足.求证:图1160(1)AEABAFAC;(2)AEFACB.【

6、证明】(1)ADBC,DEAB,DFAC,在RtABD中,由射影定理得AD2AEAB,在RtADC中,由射影定理得AD2AFAC,AEABAFAC.(2)AEABAFAC,.又EAFCAB,AEFACB.探究共研型射影定理的条件探究1如何使用射影定理?【提示】运用射影定理时,要注意其成立的条件,要结合图形去记忆定理,当所给条件中具备定理的条件时,可直接运用定理,有时也可通过作垂线使之满足定理的条件,再运用定理,在处理一些综合问题时,常常与三角形的相似相联系,要注意它们的综合应用.探究2命题“如果一个三角形一边上的高是另两边在这条边上的射影的比例中项,那么这个三角形是直角三角形”是否正确?若正确

7、,你能证明吗?【提示】命题正确.如图所示,在ABC中,CDAB于D,若CD2ADBD,则ABC为直角三角形.证明如下:CDAB,CDABDC90.又CD2ADBD,即ADCDCDBD,ACDCBD.CADBCD.又ACDCAD90,ACBACDBCDACDCAD90,即ABC为直角三角形.如图1161所示,AD,BE是ABC的高,DFAB于F,DF交BE于G,FD的延长线交AC的延长线于H.图1161求证:DF2FGFH.【精彩点拨】首先证明三角形相似,然后再在Rt中利用射影定理进行转化证明.【证明】BEAC,ABEBAE90.同理,HHAF90,ABEH.又BFGHFA,BFGHFA,BFH

8、FFGAF,BFAFFGFH.在RtADB中,DF2BFAF,DF2FGFH.再练一题3.在RtACB中,C90,CDAB于D,若BDAD14,则tan BCD的值是()A.B.C.D.2【解析】如图,由射影定理得CD2ADBD,又BDAD14,令BDx,则AD4x(x0)CD2ADBD4x2,CD2x.在RtCDB中,tanBCD.【答案】C构建体系1.一个直角三角形两条直角边的比为1,则它们在斜边上的射影比为()A.12B.13C.1 D.15【解析】设RtABC中ACB90,CDAB于D,则AC2ADAB,BC2BDAB,22.【答案】D2.如图1162所示,在ABC中,ACB90,CD

9、AB,D为垂足,若CD6,ADDB12,则AD的值是()图1162A.6 B.3C.18D.3【解析】由题意知AD218,AD3.【答案】B3.如图1163所示,在矩形ABCD中,AEBD,OFAB,DEEB13,OFa,则对角线BD的长为_. 【导学号:96990011】图1163【解析】由题意知,AD2a,DEBD,AD2DEBDBD2,BD24AD216a2,BD4a.【答案】4a4.如图1164所示,在ABC中,BAC90,ADBC于D,BE平分ABC交AC于E,EFBC于F,且BDCF2CDEF2.图1164求证:EFDFBCAC.【证明】BAC90,ADBC,由射影定理知AC2CDBC,即.BE平分ABC,EAAB,EFBC,AEEF.EFBC,ADBC,EFAD.即EFDFBCAC.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3