ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:1.29MB ,
资源ID:1002602      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1002602-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018-2019学年高中数学人教A版选修2-3讲义:第二章 2-2 2.2-1 条件概率 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018-2019学年高中数学人教A版选修2-3讲义:第二章 2-2 2.2-1 条件概率 WORD版含答案.doc

1、22.1条件概率预习课本P5153,思考并完成以下问题1条件概率的定义是什么?它的计算公式有哪些? 2条件概率的特点是什么?它具有哪些性质? 1条件概率(1)概念设A,B为两个事件,且P(A)0,称P(B|A)为在事件发生的条件下,事件发生的条件概率P(B|A)读作发生的条件下发生的概率(2)计算公式缩小样本空间法:P(B|A);公式法:P(B|A).点睛(1)P(B|A)与P(A|B)意义不同,由条件概率的定义可知P(B|A)表示在事件A发生的条件下事件B发生的条件概率;而P(A|B)表示在事件B发生的条件下事件A发生的条件概率(2)P(B|A)与P(B):在事件A发生的前提下,事件B发生的

2、概率不一定是P(B),即P(B|A)与P(B)不一定相等2条件概率的性质(1)有界性:0P(B|A)1.(2)可加性:如果B和C是两个互斥事件,则P(BC|A)P(B|A)P(C|A)点睛对条件概率性质的两点说明(1)前提条件:P(A)0.(2)P(BC|A)P(B|A)P(C|A),必须B与C互斥,并且都是在同一个条件A下1判断下列命题是否正确(正确的打“”,错误的打“”)(1)若事件A,B互斥,则P(B|A)1.()(2)事件A发生的条件下, 事件B发生,相当于A, B同时发生()答案:(1)(2)2已知P(AB),P(A),则P(B|A)为()A.B.C. D.答案:B3下列式子成立的是

3、()AP(A|B)P(B|A)B0P(B|A)8,4664558,56658,668,所以事件B的基本事件数为432110,所以P(B).在事件A发生的条件下,事件B发生,即事件AB的基本事件数为6.故P(AB).由条件概率公式得(1)P(B|A).(2)P(A|B).法二:n(A)6212.由366345548,4664558,56658,668知n(B)10,其中n(AB)6.所以(1)P(B|A).(2)P(A|B).计算条件概率的两种方法提醒:(1)对定义法,要注意P(AB)的求法(2)对第二种方法,要注意n(AB)与n(A)的求法活学活用1已知某产品的次品率为4%,其合格品中75%为

4、一级品,则任选一件为一级品的概率为()A75%B96%C72% D78.125%解析:选C记“任选一件产品是合格品”为事件A,则P(A)1P()14%96%. 记“任选一件产品是一级品”为事件B.由于一级品必是合格品,所以事件A包含事件B,故P(AB)P(B)由合格品中75%为一级品知P(B|A)75%; 故P(B)P(AB)P(A)P(B|A)96%75%72%.2某种元件用满6 000小时未坏的概率是,用满10 000小时未坏的概率是.现有1个此种元件,已经用过6 000小时未坏,求它能用到10 000小时的概率解:设A用满10 000小时未坏,B用满6 000小时未坏,显然ABA,所以P

5、(A|B).条件概率的应用典例在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个球,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率解法一:设“摸出第一个球为红球”为事件A,“摸出第二个球为黄球”为事件B,“摸出第二个球为黑球”为事件C,则P(A),P(AB),P(AC).P(B|A),P(C|A).P(BC|A)P(B|A)P(C|A).所求的条件概率为.法二:n(A)1C9,n(BC|A)CC5,P(BC|A).所求的条件概率为.利用条件概率性质的解题策略(1)分析条件,选择公式:首先看事件B,C是否互斥,若互斥,则选择公式P(BC|A)P(B|A)

6、P(C|A). (2)分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率活学活用在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率解:记事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题,另一道答错”,事件C为“该考生答对了其中4道题,另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优

7、秀”,则A,B,C两两互斥,且DABC,EAB,可知P(D)P(ABC)P(A)P(B)P(C),P(AD)P(A),P(BD)P(B),P(E|D)P(A|D)P(B|D).故所求的概率为. 层级一学业水平达标1已知A与B是两个事件,P(B),P(AB),则P(A|B)等于()A.B.C. D.解析:选D由条件概率的计算公式,可得P(A|B).24张奖券中只有1张能中奖,现分别由4名同学无放回地抽取若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是()A. B.C. D1解析:选B因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是

8、.3投掷一枚质地均匀的骰子两次,记A两次的点数均为奇数,B两次的点数之和为4,则P(B|A)等于()A. B.C. D.解析:选C由题意事件A包含的基本事件是(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)共9个,在A发生的条件下,事件B包含的基本事件是1,3,3,1共2个,所以P(B|A).4甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)0.2,P(B)0.18,P(AB)0.12,则P(A|B)和P(B|A)分别等于()A., B. ,C., D

9、. ,解析:选CP(A|B),P(B|A).5从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)等于()A. B.C. D.解析:选BP(A),P(AB),由条件概率的计算公式得P(B|A).6投掷两颗均匀的骰子,已知点数不同,设两颗骰子点数之和为X,则X6的概率为_解析:设A“投掷两颗骰子,其点数不同”,B“X6”,则P(A),P(AB),P(B|A).答案:7某气象台统计,该地区下雨的概率为,既刮四级以上的风又下雨的概率为.设事件A为该地区下雨,事件B为该地区刮四级以上的风,则P(B|A)_.解析:由题意知P(A),

10、P(AB),故P(B|A).答案:8有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取1粒,则这粒种子能长成幼苗的概率为_解析:记“种子发芽”为事件A,“种子长成幼苗”为事件AB(发芽,又成活),出芽后的幼苗成活率为P(B|A)0.8,又P(A)0.9.故P(AB)P(B|A)P(A)0.72.答案:0.729一袋中共有10个大小相同的黑球和白球若从袋中任意摸出2个球,至少有1个白球的概率为.(1)求白球的个数;(2)现从中不放回地取球,每次取1球,取2次,已知第2次取得白球,求第1次取得黑球的概率解:(1)记“从袋中任意摸出2个球,至少有1个白球”为事件A,记袋中

11、白球有x个则P(A)1,解得x5,即白球的个数为5.(2)令“第2次取得白球”为事件B,“第1次取得黑球”为事件C,则P(BC),P(B).故P(C|B).10某校高三(1)班有学生40人,其中共青团员15人全班平均分成4个小组,其中第一组有共青团员4人从该班任选一人作学生代表(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率解:设事件A表示“选到第一组学生”,事件B表示“选到共青团员”(1)由题意,P(A).(2)法一:要求的是在事件B发生的条件下,事件A发生的条件概率P(A|B)不难理解,在事件B发生的条件下(即以所选到的学生是共青团员为前提),有15种

12、不同的选择,其中属于第一组的有4种选择因此,P(A|B).法二:P(B),P(AB),P(A|B).层级二应试能力达标1.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是()A.B.C.D.解析:选C在已知取出的小球不是红球的条件下,问题相当于从5黄10绿共15个小球中任取一个,求它是绿球的概率,P.2将三颗骰子各掷一次,设事件A表示“三个点数都不相同”,B表示“至少出现一个6点”,则概率P(A|B)等于()A. B. C. D.解析:选A因为P(A|B),P(AB),P(B)1P()11.所以P(A|B).3根据历年

13、气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在吹东风的条件下下雨的概率为()A. B. C. D.解析:选D设事件A表示“该地区四月份下雨”,B表示“四月份吹东风”,则P(A),P(B),P(AB),从而在吹东风的条件下下雨的概率为P(A|B).4从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为()A. B. C. D.解析:选D设事件A表示“抽到2张都是假钞”,事件B为“2张中至少有一张假钞”,所以为P(A|B). 而P(AB),P(B).P(A|B).5100件产品中有5件次品,不放回地抽取两次

14、,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为_解析:设“第一次抽到次品”为事件A,“第二次抽到正品”为事件B,则P(A),P(AB),所以P(B|A).答案:6一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为_解析:设第一支取好晶体管为事件A,第二支取好晶体管为事件B,则P(A),P(AB)P(A)P(B),则P(B|A).答案:7现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;

15、(3)在第1次抽到舞蹈的条件下,第2次抽到舞蹈节目的概率解:设“第1次抽到舞蹈节目”为事件A,“第2次抽到舞蹈节目”为事件B,则“第1次和第2次都抽到舞蹈节目”为事件AB.(1)从6个节目中不放回地依次抽取2次的事件数为n()A30,根据分步计数原理n(A)AA20,于是P(A).(2)因为n(AB)A12,于是P(AB).(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A).法二:因为n(AB)12,n(A)20,所以P(B|A).8根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量XX300300X700700X

16、900X900工期延误天数Y02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:(1)工期延误天数Y的分布列;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率解:(1)由已知条件和概率的加法公式有:P(X300)0.3,P(300X700)P(X700)P(X300)0.70.30.4,P(700X900)P(X900)P(X700)0.90.70.2,P(X900)1P(X900)10.90.1.所以Y的分布列为Y02610P0.30.40.20.1(2)由概率的加法公式,得P(X300)1P(X300)0.7,又P(300X900)P(X900)P(X300)0.90.30.6.由条件概率,得P(Y6|X300)P(X900|X300).故在降水量X至少是300 mm的条件下,工期延误不超过6天的概率是.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3