ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:830KB ,
资源ID:1001909      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1001909-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015年高考数学(四川专用理)一轮复习考点突破:选修4-2 矩阵与变换.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015年高考数学(四川专用理)一轮复习考点突破:选修4-2 矩阵与变换.doc

1、选修42矩阵与变换A最新考纲1了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系2了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示3理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质4理解逆矩阵的意义,会求出简单二阶逆矩阵5理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.知 识 梳 理1矩阵的乘法规则(1)行矩阵a11a12与列矩阵的乘法规则:a11a12a11b11a12b21(2)二阶矩阵与列向量的乘法规则:.设A是一个二阶矩阵,、是平面上的任意两个向量,、1、2是任意三个实数,则A()A;A()AA;A(12)1A2A.(3)两个二阶矩阵

2、相乘的结果仍然是一个矩阵,其乘法法则如下:性质:一般情况下,ABBA,即矩阵的乘法不满足交换律;矩阵的乘法满足结合律,即(AB)CA(BC);矩阵的乘法不满足消去律2矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A,B,若有ABBAE,则称A是可逆的,B称为A的逆矩阵若二阶矩阵A存在逆矩阵B,则逆矩阵是唯一的,通常记A的逆矩阵为A1,A1B.(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A(detAadbc0),它的逆矩阵为A1.(3)逆矩阵与二元一次方程组:如果关于变量x,y的二元一次方程组的系数矩阵A可逆,那么该方程组有唯一解1,其中A1.3二阶矩阵的特征值和特征向量(1)特征值与特征向量

3、的概念设A是一个二阶矩阵,如果对于实数,存在一个非零向量,使得A,那么称为A的一个特征值,而称为A的一个属于特征值的一个特征向量(2)特征多项式与特征方程设是二阶矩阵A的一个特征值,它的一个特征向量为,则A,即满足二元一次方程组故(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式0.记f()为矩阵A的特征多项式;方程0,即f()0称为矩阵A的特征方程(3)特征值与特征向量的计算如果是二阶矩阵A的特征值,则是特征方程f()2(ad)adbc0的一个根解这个关于的二元一次方程,得1、2,将1、2分别代入方程组(*),分别求出它们的一个非零解记1,2.则A111、A222,因此1、2是矩阵A的

4、特征值,1,2为矩阵A的分别属于特征值1、2的一个特征向量诊 断 自 测1. _. 解析. 答案2若A,B,则AB_.解析AB. 答案3设A,B,则AB的逆矩阵为_解析A1,B1(AB)1B1A1 .答案4函数yx2在矩阵M变换作用下的结果为_解析 xx,y4y,代入yx2,得yx2,即yx2.答案yx25若A,则A的特征值为_解析A的特征多项式f()(1)(2)302328(7)(4),A的特征值为17,24.答案7和4考点一矩阵与变换【例1】 (2014苏州市自主学习调查)已知a,b是实数,如果矩阵M所对应的变换将直线xy1变换成x2y1,求a,b的值解设点(x,y)是直线xy1上任意一点

5、,在矩阵M的作用下变成点(x,y),则 ,所以因为点(x,y),在直线x2y1上,所以(22b)x(a2)y1,即所以规律方法 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键【训练1】 已知变换S把平面上的点A(3,0),B(2,1)分别变换为点A(0,3),B(1,1),试求变换S对应的矩阵T.解设T,则T: ,解得T: ,解得综上可知T.考点二二阶逆矩阵与二元一次方程组【例2】 已知矩阵M所对应的线性变换把点A(x,y)变成点A(13,5),试求M的逆矩阵及点A的坐标解依题意得由M,得|M|1,故M1.从而由得,故A(2,3)为所求规律方法

6、求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解在求逆矩阵时要重视(AB)1B1A1性质的应用【训练2】 已知矩阵A,(1)求矩阵A的逆矩阵;(2)利用逆矩阵知识解方程组解(1)法一设逆矩阵为A1,则由,得解得A1.法二由公式知若A,(2)已知方程组可转化为即AXB,其中A,X,B,且由(1),得A1.因此,由AXB,同时左乘A1,有A1AXA1B.即原方程组的解为考点三求矩阵的特征值与特征向量【例3】 已知aR,矩阵A对应的线性变换把点P(1,1)变成点P(3,3),求矩阵A的特征值以及每个特征值的一个特征向量解由题意 ,得a13,即a2,矩阵A的特征多项式为f()(1)24(1

7、)(3),令f()0,所以矩阵A的特征值为11,23.对于特征值11,解相应的线性方程组得一个非零解因此,是矩阵A的属于特征值11的一个特征向量;对于特征值23,解相应的线性方程组得一个非零解因此,是矩阵A的属于特征值23的一个特征向量规律方法 已知A,求特征值和特征向量,其步骤为:(1)令f()(a)(d)bc0,求出特征值;(2)列方程组(3)赋值法求特征向量,一般取x1或者y1,写出相应的向量【训练3】 (2014扬州质检)已知矩阵M,求M的特征值及属于各特征值的一个特征向量解由矩阵M的特征多项式f()(3)210,解得12,24,即为矩阵M的特征值设矩阵M的特征向量为,当12时,由M2

8、,可得可令x1,得y1,1是M的属于12的特征向量当24时,由M4,可得取x1,得y1,2是M的属于24的特征向量用坐标转移的思想求曲线在变换作用下的新方程【典例】 二阶矩阵M对应的变换T将点(1,1)与(2,1)分别变换成点(1,1)与(0,2)(1)求矩阵M;(2)设直线l在变换T作用下得到了直线m:xy4,求l的方程审题视点(1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解(2)知道直线l在变换T作用下的直线m,求原直线,可用坐标转移法解(1)设M,则,所以且解得所以M.(2)因为且m:xy4,所以(x2y)(3x4y)4,即xy20,直线l的方程是xy20.反思感悟(1)本

9、题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法 .(3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误【自主体验】(2014南京金陵中学月考)求曲线2x22xy10在矩阵MN对应的变换作用下得到的曲线方程,其中M,N.解MN.设P(x,y)是曲线2x22xy10上任意一点,点P在矩阵MN对应的变换下变为点P(x,y),则,于是xx,yx,代入2x22xy10,得xy1.所以曲线2x22xy10在MN对应的变换作用下得到的曲线方程为xy1.一、填空题1已知变换T:,则该变换矩阵为_解析可写成.答案2计算等于

10、_解析.答案3矩阵的逆矩阵为_解析5,的逆矩阵为.答案4若矩阵A把直线l:2xy70变换成另一直线l:9xy910,则a_,b_.解析取l上两点(0,7)和(3.5,0),则,.由已知(7a,91),(10.5,3.5b)在l上,代入得a0,b1.答案015矩阵M的特征值为_解析f()(6)(3)180.0或3.答案0或36已知矩阵M,则M(24)_.解析24,M(24).答案7曲线C1:x22y21在矩阵M的作用下变换为曲线C2,则C2的方程为_解析设P(x,y)为曲线C2上任意一点,P(x,y)为曲线x22y21上与P对应的点,则,即因为P是曲线C1上的点,所以C2的方程为(x2y)2y2

11、1.答案(x2y)2y218已知矩阵A,B,则满足AXB的二阶矩阵X为_解析由题意,得A1 AXB,XA1B. 答案9已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是,则矩阵A为_解析设A,由,得由3,得所以所以A.答案二、解答题10(2012江苏卷)已知矩阵A的逆矩阵A1,求矩阵A的特征值解因为AA1E,所以A(A1)1.因为A1,所以A(A1)1,于是矩阵A的特征多项式为f()234.令f()0,解得A的特征值11,24.11已知矩阵A,A的一个特征值2,其对应的特征向量是1.(1)求矩阵A;(2)若向量,计算A5的值解(1)A.(2)矩阵A的特征多项式为f()2560,得12,23,当12时,1,当23时,得2.由m1n2,得解得m3,n1.A5A5(312)3(A51)A523(1)232535.12(2012福建卷)设曲线2x22xyy21在矩阵A(a0)对应的变换作用下得到的曲线为x2y21.(1)求实数a,b的值;(2)求A2的逆矩阵解(1)设曲线2x22xyy21上任意点P(x,y)在矩阵A对应的变换作用下的像是P(x,y)由,得又点P(x,y)在x2y21上,所以x2y21,即a2x2(bxy)21,整理得(a2b2)x22bxyy21,依题意得解得或因为a0,所以(2)由(1)知,A,A2.所以|A2|1,(A2)1.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3